AFQ.recognition.criteria#

Module Contents#

Functions#

prob_map(b_sls, bundle_def, preproc_imap, ...)

cross_midline(b_sls, bundle_def, preproc_imap, **kwargs)

start(b_sls, bundle_def, preproc_imap, **kwargs)

end(b_sls, bundle_def, preproc_imap, **kwargs)

length(b_sls, bundle_def, preproc_imap, **kwargs)

primary_axis(b_sls, bundle_def, img, **kwargs)

include(b_sls, bundle_def, preproc_imap, max_includes, ...)

curvature(b_sls, bundle_def, mapping, img, ...)

Filters streamlines by how well they match

exclude(b_sls, bundle_def, preproc_imap, **kwargs)

recobundles(b_sls, mapping, bundle_def, reg_template, ...)

qb_thresh(b_sls, bundle_def, preproc_imap, clip_edges, ...)

clean_by_other_bundle(b_sls, bundle_def, img, ...)

mahalanobis(b_sls, bundle_def, clip_edges, ...)

run_bundle_rec_plan(bundle_dict, tg, mapping, img, ...)

Attributes#

AFQ.recognition.criteria.bundle_criterion_order = ['prob_map', 'cross_midline', 'start', 'end', 'length', 'primary_axis', 'include', 'exclude',...[source]#
AFQ.recognition.criteria.valid_noncriterion = ['space', 'mahal', 'primary_axis_percentage', 'inc_addtol', 'exc_addtol'][source]#
AFQ.recognition.criteria.logger[source]#
AFQ.recognition.criteria.prob_map(b_sls, bundle_def, preproc_imap, prob_threshold, **kwargs)[source]#
AFQ.recognition.criteria.cross_midline(b_sls, bundle_def, preproc_imap, **kwargs)[source]#
AFQ.recognition.criteria.start(b_sls, bundle_def, preproc_imap, **kwargs)[source]#
AFQ.recognition.criteria.end(b_sls, bundle_def, preproc_imap, **kwargs)[source]#
AFQ.recognition.criteria.length(b_sls, bundle_def, preproc_imap, **kwargs)[source]#
AFQ.recognition.criteria.primary_axis(b_sls, bundle_def, img, **kwargs)[source]#
AFQ.recognition.criteria.include(b_sls, bundle_def, preproc_imap, max_includes, parallel_segmentation, **kwargs)[source]#
AFQ.recognition.criteria.curvature(b_sls, bundle_def, mapping, img, save_intermediates, **kwargs)[source]#

Filters streamlines by how well they match a curve in orientation and shape but not scale

AFQ.recognition.criteria.exclude(b_sls, bundle_def, preproc_imap, **kwargs)[source]#
AFQ.recognition.criteria.recobundles(b_sls, mapping, bundle_def, reg_template, img, refine_reco, save_intermediates, rng, rb_recognize_params, **kwargs)[source]#
AFQ.recognition.criteria.qb_thresh(b_sls, bundle_def, preproc_imap, clip_edges, **kwargs)[source]#
AFQ.recognition.criteria.clean_by_other_bundle(b_sls, bundle_def, img, preproc_imap, other_bundle_name, other_bundle_sls, **kwargs)[source]#
AFQ.recognition.criteria.mahalanobis(b_sls, bundle_def, clip_edges, cleaning_params, **kwargs)[source]#
AFQ.recognition.criteria.run_bundle_rec_plan(bundle_dict, tg, mapping, img, reg_template, preproc_imap, bundle_name, bundle_idx, bundle_to_flip, bundle_roi_dists, bundle_decisions, **segmentation_params)[source]#