Automated Fiber Quantification in Python (pyAFQ)#

pyAFQ is an open-source software tool for the analysis of brain white matter in diffusion MRI measurements. It implements a complete and automated data processing pipeline for tractometry, from raw DTI data to white matter tract identification, as well as quantification of tissue properties along the length of the major long-range brain white matter connections.

Here are some useful reference pages:

Citing#

If you use pyAFQ in a scientific publication, please cite our paper:

Kruper, J., Yeatman, J. D., Richie-Halford, A., Bloom, D., Grotheer, M., Caffarra, S., Kiar, G., Karipidis, I. I., Roy, E., Chandio, B. Q., Garyfallidis, E., & Rokem, A. Evaluating the Reliability of Human Brain White Matter Tractometry. DOI:10.52294/e6198273-b8e3-4b63-babb-6e6b0da10669

@article {Kruper2021-xb,
  title     = "Evaluating the reliability of human brain white matter
               tractometry",
  author    = "Kruper, John and Yeatman, Jason D and Richie-Halford, Adam and
               Bloom, David and Grotheer, Mareike and Caffarra, Sendy and Kiar,
               Gregory and Karipidis, Iliana I and Roy, Ethan and Chandio,
               Bramsh Q and Garyfallidis, Eleftherios and Rokem, Ariel",
  journal   = "Apert Neuro",
  publisher = "Organization for Human Brain Mapping",
  volume    =  1,
  number    =  1,
  month     =  nov,
  year      =  2021,
  doi       =  10.52294/e6198273-b8e3-4b63-babb-6e6b0da10669,
}

Guide Layout#

Tutorials

Beginner’s guide to pyAFQ. This guide introduces pyAFQ’S basic concepts and walks through fundamentals of using the software.

tutorials/index.html

How To

User’s guide to pyAFQ. This guide assumes you know the basics and walks through some other commonly used functionality.

howto/index.html

Explanations

This guide contains in depth explanations of the various pyAFQ methods.

explanations/index.html

API Reference

The API Reference contains technical descriptions of methods and objects used in pyAFQ. It also contains descriptions of how methods work and the parameters used for each method.

reference/index.html

Acknowledgements#

Work on this software was supported through grant 1RF1MH121868-01 from the National Institutes for Mental Health / The BRAIN Initiative and by a grant from the Gordon & Betty Moore Foundation, and from the Alfred P. Sloan Foundation to the University of Washington eScience Institute, by grant R01EB027585 to Eleftherios Garyfallidis (PI) and Ariel Rokem, grant R01HD095861 to Jason Yeatman, R21HD092771 to Jason Yeatman and Pat Kuhl, by NSF grants 1551330 to Jason Yeatman and 1934292 to Magda Balazinska (PI) and Ariel Rokem (co-PI). John Kruper’s work on pyAFQ has been supported through the NSF Graduate Research Fellowship program (DGE-2140004).

_images/eScience_Logo_HR.png
_images/BDE_Banner_revised20160211-01.jpg