import numpy as np
import logging
from time import time
import dipy.tracking.streamline as dts
from dipy.utils.parallel import paramap
from dipy.segment.clustering import QuickBundles
from dipy.segment.metricspeed import AveragePointwiseEuclideanMetric
from dipy.segment.featurespeed import ResampleFeature
from dipy.io.streamline import load_tractogram
from dipy.segment.bundles import RecoBundles
from dipy.io.stateful_tractogram import StatefulTractogram, Space
import AFQ.recognition.utils as abu
import AFQ.recognition.cleaning as abc
import AFQ.recognition.curvature as abv
import AFQ.recognition.roi as abr
import AFQ.recognition.other_bundles as abo
[docs]bundle_criterion_order = [
"prob_map", "cross_midline", "start", "end",
"length", "primary_axis", "include", "exclude",
"curvature", "recobundles", "qb_thresh"]
[docs]valid_noncriterion = [
"space", "mahal", "primary_axis_percentage",
"inc_addtol", "exc_addtol"]
[docs]logger = logging.getLogger('AFQ')
[docs]def prob_map(b_sls, bundle_def, preproc_imap, prob_threshold, **kwargs):
b_sls.initiate_selection("Prob. Map")
# using entire fgarray here only because it is the first step
fiber_probabilities = dts.values_from_volume(
bundle_def["prob_map"].get_fdata(),
preproc_imap["fgarray"], np.eye(4))
fiber_probabilities = np.mean(fiber_probabilities, -1)
b_sls.select(
fiber_probabilities > prob_threshold,
"Prob. Map")
[docs]def cross_midline(b_sls, bundle_def, preproc_imap, **kwargs):
b_sls.initiate_selection("Cross Mid.")
accepted = preproc_imap["crosses"][b_sls.selected_fiber_idxs]
if not bundle_def["cross_midline"]:
accepted = np.invert(accepted)
b_sls.select(accepted, "Cross Mid.")
[docs]def start(b_sls, bundle_def, preproc_imap, **kwargs):
accept_idx = b_sls.initiate_selection("Startpoint")
abr.clean_by_endpoints(
b_sls.get_selected_sls(),
bundle_def["start"],
0,
tol=preproc_imap["dist_to_atlas"],
flip_sls=b_sls.sls_flipped,
accepted_idxs=accept_idx)
if not b_sls.oriented_yet:
accepted_idx_flipped = abr.clean_by_endpoints(
b_sls.get_selected_sls(),
bundle_def["start"],
-1,
tol=preproc_imap["dist_to_atlas"])
b_sls.reorient(accepted_idx_flipped)
accept_idx = np.logical_xor(
accepted_idx_flipped, accept_idx)
b_sls.select(accept_idx, "Startpoint")
[docs]def end(b_sls, bundle_def, preproc_imap, **kwargs):
accept_idx = b_sls.initiate_selection("endpoint")
abr.clean_by_endpoints(
b_sls.get_selected_sls(),
bundle_def["end"],
-1,
tol=preproc_imap["dist_to_atlas"],
flip_sls=b_sls.sls_flipped,
accepted_idxs=accept_idx)
if not b_sls.oriented_yet:
accepted_idx_flipped = abr.clean_by_endpoints(
b_sls.get_selected_sls(),
bundle_def["end"],
0,
tol=preproc_imap["dist_to_atlas"])
b_sls.reorient(accepted_idx_flipped)
accept_idx = np.logical_xor(
accepted_idx_flipped, accept_idx)
b_sls.select(accept_idx, "endpoint")
[docs]def length(b_sls, bundle_def, preproc_imap, **kwargs):
accept_idx = b_sls.initiate_selection("length")
min_len = bundle_def["length"].get(
"min_len", 0) / preproc_imap["vox_dim"]
max_len = bundle_def["length"].get(
"max_len", np.inf) / preproc_imap["vox_dim"]
for idx, sl in enumerate(b_sls.get_selected_sls()):
sl_len = np.sum(
np.linalg.norm(np.diff(sl, axis=0), axis=1))
if sl_len >= min_len and sl_len <= max_len:
accept_idx[idx] = 1
b_sls.select(accept_idx, "length")
[docs]def primary_axis(b_sls, bundle_def, img, **kwargs):
b_sls.initiate_selection("orientation")
accept_idx = abc.clean_by_orientation(
b_sls.get_selected_sls(),
bundle_def["primary_axis"],
img.affine,
bundle_def.get(
"primary_axis_percentage", None))
b_sls.select(accept_idx, "orientation")
[docs]def include(b_sls, bundle_def, preproc_imap, max_includes,
parallel_segmentation, **kwargs):
accept_idx = b_sls.initiate_selection("include")
flip_using_include = len(bundle_def["include"]) > 1\
and not b_sls.oriented_yet
if f'inc_addtol' in bundle_def:
include_roi_tols = []
for inc_tol in bundle_def["inc_addtol"]:
include_roi_tols.append((
inc_tol / preproc_imap["vox_dim"] + preproc_imap["tol"])**2)
else:
include_roi_tols = [preproc_imap["tol"]**2] * len(
bundle_def["include"])
include_rois = []
for include_roi in bundle_def["include"]:
include_rois.append(np.array(
np.where(include_roi.get_fdata())).T)
# with parallel segmentation, the first for loop will
# only collect streamlines and does not need tqdm
if parallel_segmentation["engine"] != "serial":
inc_results = paramap(
abr.check_sl_with_inclusion, b_sls.get_selected_sls(),
func_args=[
include_rois, include_roi_tols],
**parallel_segmentation)
else:
inc_results = abr.check_sls_with_inclusion(
b_sls.get_selected_sls(),
include_rois,
include_roi_tols)
roi_dists = -np.ones(
(len(b_sls), max_includes),
dtype=np.int32)
if flip_using_include:
to_flip = np.ones_like(accept_idx, dtype=np.bool8)
for sl_idx, inc_result in enumerate(inc_results):
sl_accepted, sl_dist = inc_result
if sl_accepted:
if len(sl_dist) > 1:
roi_dists[sl_idx, :len(sl_dist)] = [
np.argmin(dist, 0)[0]
for dist in sl_dist]
first_roi_idx = roi_dists[sl_idx, 0]
last_roi_idx = roi_dists[
sl_idx, len(sl_dist) - 1]
# Only accept SLs that, when cut, are meaningful
if (len(sl_dist) < 2) or abs(
first_roi_idx - last_roi_idx) > 1:
# Flip sl if it is close to second ROI
# before its close to the first ROI
if flip_using_include:
to_flip[sl_idx] =\
first_roi_idx > last_roi_idx
if to_flip[sl_idx]:
roi_dists[sl_idx, :len(sl_dist)] =\
np.flip(roi_dists[
sl_idx, :len(sl_dist)])
accept_idx[sl_idx] = 1
else:
accept_idx[sl_idx] = 1
# see https://github.com/joblib/joblib/issues/945
if (
(parallel_segmentation.get(
"engine", "joblib") != "serial")
and (parallel_segmentation.get(
"backend", "loky") == "loky")):
from joblib.externals.loky import get_reusable_executor
get_reusable_executor().shutdown(wait=True)
b_sls.roi_dists = roi_dists
if flip_using_include:
b_sls.reorient(to_flip)
b_sls.select(accept_idx, "include")
[docs]def curvature(b_sls, bundle_def, mapping, img, save_intermediates, **kwargs):
'''
Filters streamlines by how well they match
a curve in orientation and shape but not scale
'''
accept_idx = b_sls.initiate_selection("curvature")
if "sft" in bundle_def["curvature"]:
ref_sl = bundle_def["curvature"]["sft"]
else:
ref_sl = load_tractogram(
bundle_def["curvature"]["path"], "same",
bbox_valid_check=False)
moved_ref_sl = abu.move_streamlines(
ref_sl, "subject", mapping, img,
save_intermediates=save_intermediates)
moved_ref_sl.to_vox()
moved_ref_sl = moved_ref_sl.streamlines[0]
moved_ref_curve = abv.sl_curve(
moved_ref_sl,
len(moved_ref_sl))
ref_curve_threshold = np.radians(bundle_def["curvature"].get(
"thresh", 10))
cut = bundle_def["curvature"].get("cut", True)
for idx, sl in enumerate(b_sls.get_selected_sls(
cut=cut, flip=True)):
if len(sl) > 1:
this_sl_curve = abv.sl_curve(sl, len(moved_ref_sl))
dist = abv.sl_curve_dist(this_sl_curve, moved_ref_curve)
if dist <= ref_curve_threshold:
accept_idx[idx] = 1
b_sls.select(accept_idx, "curvature", cut=cut)
[docs]def exclude(b_sls, bundle_def, preproc_imap, **kwargs):
accept_idx = b_sls.initiate_selection("exclude")
if f'exc_addtol' in bundle_def:
exclude_roi_tols = []
for exc_tol in bundle_def["exc_addtol"]:
exclude_roi_tols.append((
exc_tol / preproc_imap["vox_dim"] + preproc_imap["tol"])**2)
else:
exclude_roi_tols = [
preproc_imap["tol"]**2] * len(bundle_def["exclude"])
exclude_rois = []
for exclude_roi in bundle_def["exclude"]:
exclude_rois.append(np.array(
np.where(exclude_roi.get_fdata())).T)
for sl_idx, sl in enumerate(b_sls.get_selected_sls()):
if abr.check_sl_with_exclusion(
sl, exclude_rois, exclude_roi_tols):
accept_idx[sl_idx] = 1
b_sls.select(accept_idx, "exclude")
[docs]def recobundles(b_sls, mapping, bundle_def, reg_template, img, refine_reco,
save_intermediates, rng, rb_recognize_params, **kwargs):
b_sls.initiate_selection("Recobundles")
moved_sl = abu.move_streamlines(
StatefulTractogram(b_sls.get_selected_sls(), img, Space.VOX),
"template", mapping, reg_template,
save_intermediates=save_intermediates).streamlines
rb = RecoBundles(moved_sl, verbose=True, rng=rng)
_, rec_labels = rb.recognize(
bundle_def['recobundles']['sl'],
**rb_recognize_params)
if refine_reco:
_, rec_labels = rb.refine(
bundle_def['recobundles']['sl'], moved_sl[rec_labels],
**rb_recognize_params)
if not b_sls.oriented_yet:
standard_sl = next(iter(bundle_def['recobundles']['centroid']))
oriented_idx = abu.orient_by_streamline(
moved_sl[rec_labels],
standard_sl)
b_sls.reorient(rec_labels[oriented_idx])
b_sls.select(rec_labels, "Recobundles")
[docs]def qb_thresh(b_sls, bundle_def, preproc_imap, clip_edges, **kwargs):
b_sls.initiate_selection("qb_thresh")
cut = clip_edges or ("bundlesection" in bundle_def)
qbx = QuickBundles(
bundle_def["qb_thresh"] / preproc_imap["vox_dim"],
AveragePointwiseEuclideanMetric(
ResampleFeature(nb_points=12)))
clusters = qbx.cluster(b_sls.get_selected_sls(
cut=cut, flip=True))
cleaned_idx = clusters[np.argmax(
clusters.clusters_sizes())].indices
b_sls.select(cleaned_idx, "qb_thresh", cut=cut)
[docs]def clean_by_other_bundle(b_sls, bundle_def,
img,
preproc_imap,
other_bundle_name,
other_bundle_sls, **kwargs):
cleaned_idx = b_sls.initiate_selection(other_bundle_name)
cleaned_idx = 1
if 'node_thresh' in bundle_def[other_bundle_name]:
cleaned_idx_node_thresh = abo.clean_by_other_density_map(
b_sls.get_selected_sls(),
other_bundle_sls,
bundle_def[other_bundle_name]["node_thresh"],
img)
cleaned_idx = np.logical_and(cleaned_idx, cleaned_idx_node_thresh)
if 'core' in bundle_def[other_bundle_name]:
cleaned_idx_core = abo.clean_relative_to_other_core(
bundle_def[other_bundle_name]['core'].lower(),
preproc_imap["fgarray"][b_sls.selected_fiber_idxs],
np.array(abu.resample_tg(other_bundle_sls, 20)),
img.affine)
cleaned_idx = np.logical_and(cleaned_idx, cleaned_idx_core)
b_sls.select(cleaned_idx, other_bundle_name)
[docs]def mahalanobis(b_sls, bundle_def, clip_edges, cleaning_params, **kwargs):
b_sls.initiate_selection("Mahalanobis")
clean_params = bundle_def.get("mahal", {})
clean_params = {
**cleaning_params,
**clean_params}
clean_params["return_idx"] = True
cut = clip_edges or ("bundlesection" in bundle_def)
_, cleaned_idx = abc.clean_bundle(
b_sls.get_selected_sls(cut=cut, flip=True),
**clean_params)
b_sls.select(cleaned_idx, "Mahalanobis", cut=cut)
[docs]def run_bundle_rec_plan(
bundle_dict, tg, mapping, img, reg_template, preproc_imap,
bundle_name, bundle_idx, bundle_to_flip, bundle_roi_dists,
bundle_decisions,
**segmentation_params):
# Warp ROIs
logger.info(f"Preparing ROIs for {bundle_name}")
start_time = time()
bundle_def = dict(bundle_dict.get_b_info(bundle_name))
bundle_def.update(bundle_dict.transform_rois(
bundle_name,
mapping,
img.affine,
apply_to_recobundles=True))
logger.info(f"Time to prep ROIs: {time()-start_time}s")
b_sls = abu.SlsBeingRecognized(
tg.streamlines, logger,
segmentation_params["save_intermediates"],
bundle_name,
img, len(bundle_def.get("include", [])))
inputs = {}
inputs["b_sls"] = b_sls
inputs["preproc_imap"] = preproc_imap
inputs["bundle_def"] = bundle_def
inputs["max_includes"] = bundle_dict.max_includes
inputs["mapping"] = mapping
inputs["img"] = img
inputs["reg_template"] = reg_template
for key, value in segmentation_params.items():
inputs[key] = value
for potential_criterion in bundle_def.keys():
if (potential_criterion not in bundle_criterion_order) and\
(potential_criterion not in bundle_dict.bundle_names) and\
(potential_criterion not in valid_noncriterion):
raise ValueError((
"Invalid criterion in bundle definition:\n"
f"{potential_criterion} in bundle {bundle_name}.\n"
"Valid criteria are:\n"
f"{bundle_criterion_order}\n"
f"{bundle_dict.bundle_names}\n"
f"{valid_noncriterion}\n"))
for criterion in bundle_criterion_order:
if b_sls and criterion in bundle_def:
inputs[criterion] = globals()[criterion](**inputs)
if b_sls:
for ii, bundle_name in enumerate(bundle_dict.bundle_names):
if bundle_name in bundle_def.keys():
idx = np.where(bundle_decisions[:, ii])[0]
clean_by_other_bundle(
**inputs,
other_bundle_name=bundle_name,
other_bundle_sls=tg.streamlines[idx])
if b_sls:
mahalanobis(**inputs)
if b_sls and not b_sls.oriented_yet:
raise ValueError(
"pyAFQ was unable to consistently orient streamlines "
f"in bundle {bundle_name} using the provided ROIs. "
"This can be fixed by including at least 2 "
"waypoint ROIs, or by using "
"endpoint ROIs.")
if b_sls:
bundle_to_flip[
b_sls.selected_fiber_idxs,
bundle_idx] = b_sls.sls_flipped.copy()
bundle_decisions[
b_sls.selected_fiber_idxs,
bundle_idx] = 1
if hasattr(b_sls, "roi_dists"):
bundle_roi_dists[
b_sls.selected_fiber_idxs,
bundle_idx
] = b_sls.roi_dists.copy()