Using RecoBundles for bundle recognition#

For bundle recognition, pyAFQ defaults to use the waypoint ROI approach described in [Yeatman2012]. However, as an alternative approach, pyAFQ also supports using the RecoBundles algorithm [Garyfallidis2017], which uses an atlas of bundles in streamlines. This example shows how to use RecoBundles for bundle recognition.

The code closely resembles the code used in sphx_glr_tutorial_examples_plot_001-plot_afq_api.py.

import os.path as op
import AFQ.data.fetch as afd
from AFQ.api.group import GroupAFQ
import AFQ.api.bundle_dict as abd

afd.organize_stanford_data(clear_previous_afq="track")

tracking_params = dict(n_seeds=25000,
                       random_seeds=True,
                       rng_seed=42)

Defining the segmentation params#

We also refer to bundle recognition as the “segmentation” of the tractogram. Parameters of this process are set through a dictionary input to the segmentation_params argument of the GroupAFQ object. In this case, we use abd.reco_bd(16), which tells pyAFQ to use the RecoBundles algorithm for bundle recognition.

myafq = GroupAFQ(
    output_dir=op.join(afd.afq_home, 'stanford_hardi', 'derivatives',
                       'recobundles'),
    bids_path=op.join(afd.afq_home, 'stanford_hardi'),
    # Set the algorithm to use RecoBundles for bundle recognition:
    bundle_info=abd.reco_bd(16),
    preproc_pipeline='vistasoft',
    tracking_params=tracking_params,
    viz_backend_spec='plotly_no_gif')

fig_files = myafq.export_all()
  0%|          | 0/12916 MB [00:00]
  0%|          | 5/12916 MB [00:00]
  0%|          | 22/12916 MB [00:00]
  1%|          | 90/12916 MB [00:00]
  3%|▎         | 367/12916 MB [00:00]
  7%|▋         | 865/12916 MB [00:00]
 10%|▉         | 1291/12916 MB [00:00]
 13%|█▎        | 1651/12916 MB [00:00]
 16%|█▋        | 2106/12916 MB [00:01]
 20%|█▉        | 2569/12916 MB [00:01]
 23%|██▎       | 2994/12916 MB [00:01]
 26%|██▋       | 3411/12916 MB [00:01]
 29%|██▉       | 3774/12916 MB [00:01]
 32%|███▏      | 4156/12916 MB [00:01]
 36%|███▌      | 4592/12916 MB [00:01]
 39%|███▊      | 4980/12916 MB [00:01]
 41%|████      | 5326/12916 MB [00:02]
 45%|████▍     | 5750/12916 MB [00:02]
 47%|████▋     | 6115/12916 MB [00:02]
 50%|█████     | 6486/12916 MB [00:02]
 53%|█████▎    | 6803/12916 MB [00:02]
 55%|█████▌    | 7157/12916 MB [00:02]
 59%|█████▉    | 7591/12916 MB [00:02]
 61%|██████▏   | 7939/12916 MB [00:02]
 65%|██████▍   | 8346/12916 MB [00:03]
 67%|██████▋   | 8701/12916 MB [00:03]
 71%|███████   | 9117/12916 MB [00:03]
 74%|███████▍  | 9599/12916 MB [00:03]
 77%|███████▋  | 9935/12916 MB [00:03]
 80%|███████▉  | 10281/12916 MB [00:03]
 83%|████████▎ | 10777/12916 MB [00:03]
 87%|████████▋ | 11277/12916 MB [00:03]
 91%|█████████ | 11776/12916 MB [00:04]
 95%|█████████▌| 12274/12916 MB [00:04]
 99%|█████████▉| 12762/12916 MB [00:04]
100%|██████████| 12916/12916 MB [00:04]
Optimizing level 2 [max iter: 10000]
Optimizing level 1 [max iter: 1000]
Optimizing level 0 [max iter: 100]
Optimizing level 2 [max iter: 10000]
Optimizing level 1 [max iter: 1000]
Optimizing level 0 [max iter: 100]
Optimizing level 2 [max iter: 10000]
Optimizing level 1 [max iter: 1000]
Optimizing level 0 [max iter: 100]

0it [00:00, ?it/s]
28it [00:00, 275.99it/s]
56it [00:00, 248.71it/s]
82it [00:00, 228.11it/s]
106it [00:00, 229.06it/s]
132it [00:00, 233.41it/s]
156it [00:00, 223.39it/s]
181it [00:00, 230.58it/s]
205it [00:00, 221.01it/s]
228it [00:01, 216.01it/s]
254it [00:01, 227.64it/s]
278it [00:01, 230.39it/s]
302it [00:01, 221.78it/s]
325it [00:01, 220.30it/s]
348it [00:01, 216.09it/s]
376it [00:01, 231.55it/s]
400it [00:01, 230.70it/s]
426it [00:01, 238.29it/s]
450it [00:01, 226.31it/s]
474it [00:02, 227.48it/s]
497it [00:02, 224.33it/s]
522it [00:02, 226.87it/s]
545it [00:02, 220.83it/s]
569it [00:02, 223.64it/s]
592it [00:02, 219.95it/s]
615it [00:02, 221.47it/s]
638it [00:02, 222.62it/s]
662it [00:02, 226.37it/s]
687it [00:03, 232.65it/s]
711it [00:03, 232.66it/s]
735it [00:03, 232.35it/s]
759it [00:03, 230.77it/s]
787it [00:03, 244.01it/s]
813it [00:03, 246.89it/s]
838it [00:03, 238.57it/s]
862it [00:03, 238.48it/s]
886it [00:03, 222.75it/s]
914it [00:03, 236.15it/s]
938it [00:04, 232.24it/s]
962it [00:04, 230.25it/s]
986it [00:04, 221.74it/s]
1009it [00:04, 217.27it/s]
1032it [00:04, 220.77it/s]
1058it [00:04, 230.50it/s]
1083it [00:04, 235.93it/s]
1108it [00:04, 237.74it/s]
1136it [00:04, 247.60it/s]
1161it [00:05, 241.54it/s]
1186it [00:05, 226.10it/s]
1213it [00:05, 236.83it/s]
1237it [00:05, 233.05it/s]
1262it [00:05, 237.79it/s]
1286it [00:05, 227.29it/s]
1309it [00:05, 226.76it/s]
1332it [00:05, 221.74it/s]
1357it [00:05, 227.20it/s]
1380it [00:06, 226.78it/s]
1409it [00:06, 243.54it/s]
1435it [00:06, 248.16it/s]
1460it [00:06, 242.19it/s]
1485it [00:06, 236.13it/s]
1509it [00:06, 235.67it/s]
1533it [00:06, 230.50it/s]
1557it [00:06, 228.03it/s]
1581it [00:06, 231.12it/s]
1605it [00:06, 228.09it/s]
1630it [00:07, 231.19it/s]
1656it [00:07, 237.88it/s]
1683it [00:07, 246.05it/s]
1711it [00:07, 253.37it/s]
1737it [00:07, 253.18it/s]
1763it [00:07, 252.84it/s]
1789it [00:07, 239.88it/s]
1814it [00:07, 240.72it/s]
1839it [00:07, 237.83it/s]
1863it [00:08, 232.97it/s]
1890it [00:08, 241.75it/s]
1917it [00:08, 245.54it/s]
1942it [00:08, 235.90it/s]
1969it [00:08, 242.98it/s]
1995it [00:08, 245.97it/s]
2020it [00:08, 234.66it/s]
2044it [00:08, 218.22it/s]
2071it [00:08, 231.26it/s]
2097it [00:09, 237.70it/s]
2122it [00:09, 232.05it/s]
2148it [00:09, 239.24it/s]
2173it [00:09, 231.79it/s]
2200it [00:09, 241.44it/s]
2225it [00:09, 235.20it/s]
2249it [00:09, 231.82it/s]
2275it [00:09, 239.33it/s]
2300it [00:09, 237.60it/s]
2324it [00:09, 234.69it/s]
2351it [00:10, 241.02it/s]
2378it [00:10, 246.24it/s]
2405it [00:10, 250.07it/s]
2432it [00:10, 253.61it/s]
2460it [00:10, 260.55it/s]
2487it [00:10, 249.91it/s]
2514it [00:10, 253.08it/s]
2542it [00:10, 258.94it/s]
2568it [00:10, 252.53it/s]
2595it [00:11, 250.91it/s]
2621it [00:11, 249.65it/s]
2647it [00:11, 251.96it/s]
2673it [00:11, 242.31it/s]
2698it [00:11, 232.05it/s]
2726it [00:11, 243.29it/s]
2756it [00:11, 257.10it/s]
2782it [00:11, 255.86it/s]
2808it [00:11, 245.58it/s]
2833it [00:12, 244.09it/s]
2858it [00:12, 239.57it/s]
2883it [00:12, 240.89it/s]
2908it [00:12, 234.02it/s]
2932it [00:12, 233.66it/s]
2956it [00:12, 231.92it/s]
2980it [00:12, 227.81it/s]
3004it [00:12, 229.90it/s]
3030it [00:12, 238.17it/s]
3054it [00:12, 220.91it/s]
3078it [00:13, 223.94it/s]
3101it [00:13, 223.86it/s]
3130it [00:13, 242.58it/s]
3155it [00:13, 240.74it/s]
3183it [00:13, 250.94it/s]
3209it [00:13, 251.84it/s]
3235it [00:13, 246.93it/s]
3263it [00:13, 252.48it/s]
3291it [00:13, 258.01it/s]
3317it [00:14, 242.33it/s]
3344it [00:14, 246.46it/s]
3372it [00:14, 254.80it/s]
3399it [00:14, 256.27it/s]
3425it [00:14, 243.45it/s]
3452it [00:14, 250.02it/s]
3478it [00:14, 244.55it/s]
3503it [00:14, 236.63it/s]
3527it [00:14, 234.30it/s]
3551it [00:15, 235.32it/s]
3575it [00:15, 235.17it/s]
3599it [00:15, 228.89it/s]
3624it [00:15, 233.81it/s]
3648it [00:15, 231.02it/s]
3674it [00:15, 235.92it/s]
3699it [00:15, 237.79it/s]
3723it [00:15, 231.61it/s]
3749it [00:15, 239.53it/s]
3774it [00:15, 230.61it/s]
3798it [00:16, 226.67it/s]
3822it [00:16, 225.47it/s]
3845it [00:16, 226.13it/s]
3871it [00:16, 235.18it/s]
3897it [00:16, 239.41it/s]
3921it [00:16, 228.37it/s]
3944it [00:16, 225.20it/s]
3968it [00:16, 226.86it/s]
3994it [00:16, 234.76it/s]
4021it [00:17, 242.67it/s]
4046it [00:17, 227.01it/s]
4072it [00:17, 235.38it/s]
4096it [00:17, 228.64it/s]
4120it [00:17, 223.82it/s]
4148it [00:17, 238.03it/s]
4175it [00:17, 243.18it/s]
4201it [00:17, 245.14it/s]
4226it [00:17, 244.19it/s]
4252it [00:17, 244.52it/s]
4278it [00:18, 247.08it/s]
4306it [00:18, 254.07it/s]
4332it [00:18, 244.37it/s]
4357it [00:18, 244.60it/s]
4382it [00:18, 238.63it/s]
4406it [00:18, 238.85it/s]
4430it [00:18, 236.28it/s]
4454it [00:18, 227.98it/s]
4477it [00:18, 226.59it/s]
4502it [00:19, 230.49it/s]
4527it [00:19, 235.83it/s]
4551it [00:19, 235.98it/s]
4575it [00:19, 231.16it/s]
4599it [00:19, 225.44it/s]
4622it [00:19, 221.72it/s]
4645it [00:19, 215.11it/s]
4669it [00:19, 221.76it/s]
4692it [00:19, 209.39it/s]
4720it [00:20, 225.27it/s]
4744it [00:20, 228.06it/s]
4768it [00:20, 229.13it/s]
4792it [00:20, 220.78it/s]
4816it [00:20, 223.73it/s]
4843it [00:20, 236.82it/s]
4869it [00:20, 243.25it/s]
4894it [00:20, 236.22it/s]
4918it [00:20, 234.83it/s]
4942it [00:20, 225.17it/s]
4966it [00:21, 229.08it/s]
4990it [00:21, 218.66it/s]
5017it [00:21, 232.25it/s]
5044it [00:21, 237.25it/s]
5074it [00:21, 254.52it/s]
5100it [00:21, 245.99it/s]
5125it [00:21, 241.90it/s]
5150it [00:21, 243.55it/s]
5175it [00:21, 232.29it/s]
5200it [00:22, 235.18it/s]
5225it [00:22, 237.68it/s]
5249it [00:22, 233.55it/s]
5276it [00:22, 243.30it/s]
5302it [00:22, 244.89it/s]
5330it [00:22, 253.67it/s]
5358it [00:22, 259.80it/s]
5385it [00:22, 242.38it/s]
5410it [00:22, 232.23it/s]
5436it [00:23, 235.08it/s]
5460it [00:23, 227.03it/s]
5486it [00:23, 235.85it/s]
5512it [00:23, 241.56it/s]
5537it [00:23, 234.31it/s]
5562it [00:23, 234.35it/s]
5587it [00:23, 237.81it/s]
5612it [00:23, 233.52it/s]
5636it [00:23, 230.68it/s]
5662it [00:24, 236.09it/s]
5686it [00:24, 225.36it/s]
5711it [00:24, 232.14it/s]
5738it [00:24, 242.39it/s]
5763it [00:24, 233.05it/s]
5789it [00:24, 238.43it/s]
5814it [00:24, 241.26it/s]
5840it [00:24, 244.86it/s]
5866it [00:24, 247.69it/s]
5891it [00:24, 245.14it/s]
5916it [00:25, 242.95it/s]
5941it [00:25, 233.42it/s]
5967it [00:25, 239.78it/s]
5992it [00:25, 240.13it/s]
6017it [00:25, 230.28it/s]
6041it [00:25, 231.37it/s]
6065it [00:25, 220.04it/s]
6091it [00:25, 230.34it/s]
6115it [00:25, 222.43it/s]
6141it [00:26, 231.42it/s]
6166it [00:26, 236.62it/s]
6194it [00:26, 248.59it/s]
6220it [00:26, 229.96it/s]
6244it [00:26, 228.32it/s]
6268it [00:26, 226.53it/s]
6298it [00:26, 243.54it/s]
6325it [00:26, 245.57it/s]
6350it [00:26, 235.75it/s]
6376it [00:27, 242.18it/s]
6401it [00:27, 221.91it/s]
6426it [00:27, 228.96it/s]
6452it [00:27, 233.13it/s]
6476it [00:27, 234.82it/s]
6500it [00:27, 229.24it/s]
6528it [00:27, 242.29it/s]
6553it [00:27, 234.15it/s]
6578it [00:27, 234.63it/s]
6602it [00:28, 227.23it/s]
6625it [00:28, 221.01it/s]
6648it [00:28, 214.86it/s]
6674it [00:28, 226.52it/s]
6702it [00:28, 239.55it/s]
6728it [00:28, 244.96it/s]
6753it [00:28, 237.66it/s]
6778it [00:28, 239.15it/s]
6808it [00:28, 256.27it/s]
6834it [00:28, 239.71it/s]
6859it [00:29, 242.07it/s]
6884it [00:29, 240.49it/s]
6909it [00:29, 240.92it/s]
6934it [00:29, 223.88it/s]
6958it [00:29, 226.00it/s]
6981it [00:29, 217.36it/s]
7005it [00:29, 222.40it/s]
7030it [00:29, 228.48it/s]
7057it [00:29, 237.81it/s]
7081it [00:30, 232.80it/s]
7105it [00:30, 229.14it/s]
7131it [00:30, 235.48it/s]
7156it [00:30, 238.70it/s]
7186it [00:30, 252.09it/s]
7214it [00:30, 257.12it/s]
7240it [00:30, 252.47it/s]
7266it [00:30, 249.31it/s]
7292it [00:30, 250.34it/s]
7318it [00:31, 233.29it/s]
7343it [00:31, 235.62it/s]
7367it [00:31, 228.31it/s]
7394it [00:31, 235.73it/s]
7420it [00:31, 236.22it/s]
7446it [00:31, 241.40it/s]
7471it [00:31, 231.21it/s]
7495it [00:31, 229.53it/s]
7519it [00:31, 231.90it/s]
7544it [00:32, 233.72it/s]
7569it [00:32, 237.48it/s]
7593it [00:32, 236.15it/s]
7621it [00:32, 246.19it/s]
7649it [00:32, 254.88it/s]
7675it [00:32, 241.49it/s]
7701it [00:32, 246.60it/s]
7726it [00:32, 235.95it/s]
7750it [00:32, 234.80it/s]
7774it [00:32, 224.17it/s]
7798it [00:33, 228.05it/s]
7821it [00:33, 225.98it/s]
7849it [00:33, 241.26it/s]
7874it [00:33, 240.14it/s]
7899it [00:33, 235.62it/s]
7923it [00:33, 220.19it/s]
7948it [00:33, 226.36it/s]
7971it [00:33, 227.31it/s]
8001it [00:33, 247.76it/s]
8026it [00:34, 236.76it/s]
8052it [00:34, 241.17it/s]
8077it [00:34, 231.21it/s]
8108it [00:34, 252.76it/s]
8134it [00:34, 254.40it/s]
8161it [00:34, 257.17it/s]
8187it [00:34, 253.47it/s]
8213it [00:34, 248.58it/s]
8238it [00:34, 247.08it/s]
8264it [00:34, 249.11it/s]
8289it [00:35, 234.08it/s]
8313it [00:35, 234.22it/s]
8337it [00:35, 235.32it/s]
8364it [00:35, 243.80it/s]
8389it [00:35, 239.56it/s]
8414it [00:35, 240.85it/s]
8439it [00:35, 242.07it/s]
8464it [00:35, 236.13it/s]
8490it [00:35, 242.21it/s]
8516it [00:36, 245.30it/s]
8541it [00:36, 245.11it/s]
8567it [00:36, 246.38it/s]
8594it [00:36, 252.61it/s]
8623it [00:36, 262.05it/s]
8650it [00:36, 251.59it/s]
8676it [00:36, 247.39it/s]
8701it [00:36, 237.46it/s]
8725it [00:36, 236.78it/s]
8749it [00:37, 229.44it/s]
8773it [00:37, 228.59it/s]
8802it [00:37, 244.54it/s]
8828it [00:37, 246.83it/s]
8853it [00:37, 230.05it/s]
8877it [00:37, 231.79it/s]
8901it [00:37, 225.56it/s]
8928it [00:37, 235.88it/s]
8952it [00:37, 222.89it/s]
8975it [00:38, 216.97it/s]
9003it [00:38, 232.73it/s]
9029it [00:38, 238.54it/s]
9054it [00:38, 228.83it/s]
9078it [00:38, 220.25it/s]
9102it [00:38, 225.10it/s]
9126it [00:38, 227.80it/s]
9149it [00:38, 211.62it/s]
9176it [00:38, 225.27it/s]
9202it [00:38, 234.47it/s]
9228it [00:39, 241.14it/s]
9253it [00:39, 240.04it/s]
9278it [00:39, 239.70it/s]
9305it [00:39, 246.65it/s]
9332it [00:39, 248.86it/s]
9357it [00:39, 248.15it/s]
9382it [00:39, 243.75it/s]
9409it [00:39, 250.67it/s]
9438it [00:39, 261.18it/s]
9465it [00:40, 254.31it/s]
9491it [00:40, 231.68it/s]
9519it [00:40, 244.23it/s]
9544it [00:40, 238.73it/s]
9569it [00:40, 226.78it/s]
9596it [00:40, 236.50it/s]
9621it [00:40, 239.80it/s]
9646it [00:40, 241.69it/s]
9671it [00:40, 237.78it/s]
9695it [00:41, 232.43it/s]
9719it [00:41, 232.40it/s]
9743it [00:41, 230.59it/s]
9771it [00:41, 240.69it/s]
9796it [00:41, 235.38it/s]
9820it [00:41, 227.47it/s]
9848it [00:41, 240.79it/s]
9873it [00:41, 237.39it/s]
9897it [00:41, 226.65it/s]
9920it [00:42, 223.91it/s]
9943it [00:42, 225.11it/s]
9966it [00:42, 223.24it/s]
9990it [00:42, 228.03it/s]
10014it [00:42, 231.02it/s]
10038it [00:42, 226.85it/s]
10066it [00:42, 238.85it/s]
10090it [00:42, 238.44it/s]
10122it [00:42, 259.85it/s]
10149it [00:42, 251.77it/s]
10175it [00:43, 252.87it/s]
10201it [00:43, 244.03it/s]
10226it [00:43, 235.88it/s]
10250it [00:43, 236.89it/s]
10275it [00:43, 230.11it/s]
10306it [00:43, 249.18it/s]
10332it [00:43, 233.36it/s]
10357it [00:43, 237.36it/s]
10381it [00:43, 238.05it/s]
10406it [00:44, 240.57it/s]
10433it [00:44, 247.14it/s]
10460it [00:44, 251.50it/s]
10486it [00:44, 252.37it/s]
10512it [00:44, 240.42it/s]
10538it [00:44, 245.88it/s]
10565it [00:44, 248.47it/s]
10590it [00:44, 248.19it/s]
10615it [00:44, 243.02it/s]
10640it [00:44, 243.24it/s]
10665it [00:45, 238.97it/s]
10692it [00:45, 247.29it/s]
10717it [00:45, 244.03it/s]
10742it [00:45, 232.94it/s]
10766it [00:45, 233.62it/s]
10793it [00:45, 242.38it/s]
10818it [00:45, 237.63it/s]
10842it [00:45, 233.86it/s]
10866it [00:45, 232.52it/s]
10894it [00:46, 244.21it/s]
10919it [00:46, 228.19it/s]
10944it [00:46, 233.52it/s]
10968it [00:46, 222.88it/s]
10991it [00:46, 224.25it/s]
11014it [00:46, 225.09it/s]
11039it [00:46, 230.83it/s]
11063it [00:46, 232.02it/s]
11088it [00:46, 232.10it/s]
11112it [00:47, 230.28it/s]
11136it [00:47, 224.90it/s]
11164it [00:47, 238.12it/s]
11188it [00:47, 227.83it/s]
11211it [00:47, 226.83it/s]
11235it [00:47, 228.96it/s]
11259it [00:47, 226.13it/s]
11286it [00:47, 237.51it/s]
11310it [00:47, 236.73it/s]
11339it [00:47, 251.78it/s]
11365it [00:48, 236.55it/s]
11391it [00:48, 239.62it/s]
11419it [00:48, 248.66it/s]
11445it [00:48, 247.40it/s]
11473it [00:48, 254.32it/s]
11499it [00:48, 242.75it/s]
11524it [00:48, 240.08it/s]
11549it [00:48, 234.24it/s]
11575it [00:48, 238.96it/s]
11601it [00:49, 242.78it/s]
11626it [00:49, 221.42it/s]
11653it [00:49, 231.88it/s]
11679it [00:49, 239.19it/s]
11704it [00:49, 230.22it/s]
11729it [00:49, 233.28it/s]
11753it [00:49, 230.80it/s]
11777it [00:49, 227.50it/s]
11800it [00:49, 222.11it/s]
11823it [00:50, 224.05it/s]
11848it [00:50, 231.46it/s]
11872it [00:50, 233.38it/s]
11900it [00:50, 244.97it/s]
11925it [00:50, 238.65it/s]
11954it [00:50, 248.33it/s]
11979it [00:50, 244.17it/s]
12004it [00:50, 238.67it/s]
12028it [00:50, 219.54it/s]
12051it [00:51, 215.40it/s]
12078it [00:51, 229.35it/s]
12102it [00:51, 228.26it/s]
12127it [00:51, 232.97it/s]
12151it [00:51, 223.55it/s]
12175it [00:51, 223.51it/s]
12198it [00:51, 213.30it/s]
12221it [00:51, 216.32it/s]
12245it [00:51, 220.41it/s]
12270it [00:51, 226.22it/s]
12293it [00:52, 225.85it/s]
12316it [00:52, 216.12it/s]
12338it [00:52, 216.85it/s]
12365it [00:52, 226.58it/s]
12388it [00:52, 225.01it/s]
12412it [00:52, 227.51it/s]
12436it [00:52, 229.71it/s]
12459it [00:52, 220.66it/s]
12482it [00:52, 220.63it/s]
12505it [00:53, 223.05it/s]
12529it [00:53, 226.98it/s]
12554it [00:53, 232.28it/s]
12581it [00:53, 240.72it/s]
12606it [00:53, 242.12it/s]
12634it [00:53, 249.69it/s]
12659it [00:53, 247.80it/s]
12684it [00:53, 239.06it/s]
12711it [00:53, 243.54it/s]
12736it [00:53, 242.73it/s]
12761it [00:54, 237.81it/s]
12785it [00:54, 227.47it/s]
12810it [00:54, 232.84it/s]
12836it [00:54, 238.80it/s]
12861it [00:54, 239.28it/s]
12885it [00:54, 233.67it/s]
12912it [00:54, 242.69it/s]
12937it [00:54, 236.84it/s]
12962it [00:54, 238.93it/s]
12986it [00:55, 237.40it/s]
13010it [00:55, 229.58it/s]
13035it [00:55, 234.49it/s]
13059it [00:55, 225.06it/s]
13084it [00:55, 231.68it/s]
13108it [00:55, 231.08it/s]
13133it [00:55, 235.44it/s]
13160it [00:55, 241.98it/s]
13185it [00:55, 238.22it/s]
13209it [00:56, 234.68it/s]
13233it [00:56, 231.39it/s]
13259it [00:56, 237.82it/s]
13283it [00:56, 223.92it/s]
13307it [00:56, 227.02it/s]
13335it [00:56, 242.07it/s]
13365it [00:56, 256.80it/s]
13391it [00:56, 252.16it/s]
13417it [00:56, 242.35it/s]
13442it [00:56, 241.70it/s]
13467it [00:57, 242.15it/s]
13492it [00:57, 236.86it/s]
13520it [00:57, 247.14it/s]
13545it [00:57, 219.99it/s]
13572it [00:57, 232.09it/s]
13596it [00:57, 220.93it/s]
13620it [00:57, 224.66it/s]
13646it [00:57, 233.13it/s]
13672it [00:57, 240.51it/s]
13698it [00:58, 241.17it/s]
13723it [00:58, 236.39it/s]
13747it [00:58, 236.62it/s]
13774it [00:58, 244.17it/s]
13799it [00:58, 242.04it/s]
13826it [00:58, 249.72it/s]
13852it [00:58, 243.72it/s]
13877it [00:58, 238.02it/s]
13902it [00:58, 237.28it/s]
13926it [00:59, 230.09it/s]
13952it [00:59, 233.69it/s]
13976it [00:59, 233.48it/s]
14001it [00:59, 236.93it/s]
14030it [00:59, 250.77it/s]
14056it [00:59, 252.92it/s]
14083it [00:59, 254.73it/s]
14110it [00:59, 257.83it/s]
14136it [00:59, 246.55it/s]
14161it [00:59, 237.63it/s]
14188it [01:00, 246.61it/s]
14213it [01:00, 237.75it/s]
14239it [01:00, 243.26it/s]
14264it [01:00, 241.50it/s]
14292it [01:00, 249.88it/s]
14319it [01:00, 253.00it/s]
14345it [01:00, 250.29it/s]
14371it [01:00, 240.06it/s]
14396it [01:00, 237.66it/s]
14420it [01:01, 235.36it/s]
14444it [01:01, 222.37it/s]
14467it [01:01, 223.35it/s]
14491it [01:01, 225.72it/s]
14516it [01:01, 230.83it/s]
14543it [01:01, 241.49it/s]
14568it [01:01, 236.73it/s]
14592it [01:01, 225.89it/s]
14615it [01:01, 220.00it/s]
14643it [01:02, 236.17it/s]
14667it [01:02, 234.93it/s]
14693it [01:02, 240.59it/s]
14718it [01:02, 239.55it/s]
14743it [01:02, 236.39it/s]
14771it [01:02, 248.24it/s]
14798it [01:02, 253.08it/s]
14824it [01:02, 245.57it/s]
14849it [01:02, 241.59it/s]
14874it [01:02, 227.51it/s]
14899it [01:03, 232.62it/s]
14923it [01:03, 227.80it/s]
14946it [01:03, 214.16it/s]
14969it [01:03, 218.22it/s]
14998it [01:03, 236.00it/s]
15023it [01:03, 239.16it/s]
15048it [01:03, 236.23it/s]
15073it [01:03, 236.66it/s]
15097it [01:03, 221.59it/s]
15120it [01:04, 221.70it/s]
15145it [01:04, 227.96it/s]
15172it [01:04, 239.30it/s]
15197it [01:04, 240.57it/s]
15222it [01:04, 240.89it/s]
15250it [01:04, 250.27it/s]
15276it [01:04, 246.29it/s]
15301it [01:04, 239.62it/s]
15326it [01:04, 241.84it/s]
15351it [01:05, 234.97it/s]
15375it [01:05, 227.76it/s]
15398it [01:05, 220.99it/s]
15423it [01:05, 228.58it/s]
15450it [01:05, 239.29it/s]
15475it [01:05, 237.97it/s]
15500it [01:05, 233.73it/s]
15524it [01:05, 227.87it/s]
15549it [01:05, 233.06it/s]
15574it [01:05, 234.91it/s]
15598it [01:06, 231.12it/s]
15622it [01:06, 232.93it/s]
15646it [01:06, 224.48it/s]
15672it [01:06, 232.23it/s]
15696it [01:06, 224.15it/s]
15723it [01:06, 233.44it/s]
15747it [01:06, 231.66it/s]
15771it [01:06, 227.73it/s]
15795it [01:06, 227.26it/s]
15819it [01:07, 228.94it/s]
15845it [01:07, 236.37it/s]
15869it [01:07, 230.31it/s]
15893it [01:07, 217.19it/s]
15919it [01:07, 225.82it/s]
15942it [01:07, 222.52it/s]
15966it [01:07, 224.56it/s]
15989it [01:07, 219.99it/s]
16012it [01:07, 214.69it/s]
16036it [01:08, 217.59it/s]
16060it [01:08, 222.69it/s]
16083it [01:08, 224.04it/s]
16111it [01:08, 239.78it/s]
16138it [01:08, 246.77it/s]
16163it [01:08, 236.85it/s]
16187it [01:08, 229.89it/s]
16211it [01:08, 224.66it/s]
16234it [01:08, 218.83it/s]
16257it [01:09, 221.18it/s]
16280it [01:09, 223.31it/s]
16306it [01:09, 232.09it/s]
16332it [01:09, 239.12it/s]
16358it [01:09, 244.98it/s]
16383it [01:09, 246.43it/s]
16408it [01:09, 235.03it/s]
16435it [01:09, 237.16it/s]
16459it [01:09, 232.54it/s]
16488it [01:09, 247.31it/s]
16513it [01:10, 239.27it/s]
16539it [01:10, 244.24it/s]
16564it [01:10, 245.86it/s]
16589it [01:10, 245.39it/s]
16614it [01:10, 238.84it/s]
16638it [01:10, 216.91it/s]
16663it [01:10, 225.44it/s]
16688it [01:10, 229.31it/s]
16712it [01:10, 231.51it/s]
16736it [01:11, 222.77it/s]
16764it [01:11, 236.71it/s]
16789it [01:11, 239.82it/s]
16815it [01:11, 243.09it/s]
16840it [01:11, 244.78it/s]
16868it [01:11, 253.80it/s]
16894it [01:11, 240.79it/s]
16919it [01:11, 239.01it/s]
16944it [01:11, 234.76it/s]
16971it [01:11, 238.92it/s]
16995it [01:12, 236.59it/s]
17019it [01:12, 234.65it/s]
17043it [01:12, 234.29it/s]
17067it [01:12, 207.89it/s]
17092it [01:12, 218.55it/s]
17118it [01:12, 229.87it/s]
17143it [01:12, 235.06it/s]
17167it [01:12, 224.28it/s]
17194it [01:12, 234.04it/s]
17218it [01:13, 230.03it/s]
17247it [01:13, 243.58it/s]
17272it [01:13, 236.06it/s]
17298it [01:13, 241.86it/s]
17325it [01:13, 249.49it/s]
17351it [01:13, 245.60it/s]
17380it [01:13, 257.61it/s]
17406it [01:13, 245.77it/s]
17433it [01:13, 251.42it/s]
17459it [01:14, 234.50it/s]
17483it [01:14, 233.91it/s]
17509it [01:14, 240.70it/s]
17534it [01:14, 238.66it/s]
17559it [01:14, 231.67it/s]
17588it [01:14, 247.10it/s]
17613it [01:14, 246.97it/s]
17638it [01:14, 238.50it/s]
17665it [01:14, 245.15it/s]
17691it [01:15, 248.51it/s]
17717it [01:15, 248.68it/s]
17742it [01:15, 245.80it/s]
17767it [01:15, 238.78it/s]
17791it [01:15, 237.45it/s]
17818it [01:15, 245.40it/s]
17846it [01:15, 251.32it/s]
17873it [01:15, 255.25it/s]
17899it [01:15, 253.63it/s]
17925it [01:15, 243.48it/s]
17937it [01:16, 235.98it/s]
/opt/hostedtoolcache/Python/3.12.11/x64/lib/python3.12/site-packages/AFQ/tasks/segmentation.py:61: UserWarning:

Pass ['to_space'] as keyword args. From version 2.0.0 passing these as positional arguments will result in an error.

/opt/hostedtoolcache/Python/3.12.11/x64/lib/python3.12/site-packages/AFQ/recognition/utils.py:97: UserWarning:

Streamlines do not have the same number of points. All streamlines need to have the same number of points. Use dipy.tracking.streamline.set_number_of_points to adjust your streamlines


  0%|          | 0/16 [00:00<?, ?it/s]
 25%|██▌       | 4/16 [00:00<00:00, 39.90it/s]
 56%|█████▋    | 9/16 [00:00<00:00, 41.44it/s]
 88%|████████▊ | 14/16 [00:00<00:00, 41.94it/s]
100%|██████████| 16/16 [00:00<00:00, 41.80it/s]

  0%|          | 0/16 [00:00<?, ?it/s]
 31%|███▏      | 5/16 [00:00<00:00, 43.23it/s]
 62%|██████▎   | 10/16 [00:00<00:00, 43.03it/s]
 94%|█████████▍| 15/16 [00:00<00:00, 43.36it/s]
100%|██████████| 16/16 [00:00<00:00, 43.29it/s]

References:#

Garyfallidis2017

Garyfallidis, Eleftherios, Marc-Alexandre Côté, Francois Rheault, Jasmeen Sidhu, Janice Hau, Laurent Petit, David Fortin, Stephen Cunanne, and Maxime Descoteaux. 2017.“Recognition of White Matter Bundles Using Local and Global Streamline-Based Registration and Clustering.”NeuroImage 170: 283-295.

Total running time of the script: (13 minutes 31.401 seconds)

Estimated memory usage: 2758 MB

Gallery generated by Sphinx-Gallery