AFQ.data.fetch
#
Module Contents#
Functions#
|
Load AFQ callosum templates from file |
|
Load AFQ templates from file |
|
Load AFQ OR templates from file |
Reads a minimal tractography from the Stanford dataset. |
|
|
If necessary, downloads the Stanford HARDI dataset into DIPY directory and |
Attributes#
- AFQ.data.fetch.read_callosum_templates(as_img=True, resample_to=False)[source]#
Load AFQ callosum templates from file
- Parameters
- as_imgbool, optional
If True, values are Nifti1Image. Otherwise, values are paths to Nifti files. Default: True
- resample_tostr or nibabel image class instance, optional
A template image to resample to. Typically, this should be the template to which individual-level data are registered. Defaults to the MNI template. Default: False
- Returns
- dict with: keys: names of template ROIs and values: nibabel Nifti1Image
- objects from each of the ROI nifti files.
- AFQ.data.fetch.read_templates(as_img=True, resample_to=False)[source]#
Load AFQ templates from file
- Parameters
- as_imgbool, optional
If True, values are Nifti1Image. Otherwise, values are paths to Nifti files. Default: True
- resample_tostr or nibabel image class instance, optional
A template image to resample to. Typically, this should be the template to which individual-level data are registered. Defaults to the MNI template. Default: False
- Returns
- dict with: keys: names of template ROIs and values: nibabel Nifti1Image
- objects from each of the ROI nifti files.
- AFQ.data.fetch.read_or_templates(as_img=True, resample_to=False)[source]#
Load AFQ OR templates from file
- Parameters
- as_imgbool, optional
If True, values are Nifti1Image. Otherwise, values are paths to Nifti files. Default: True
- resample_tostr or nibabel image class instance, optional
A template image to resample to. Typically, this should be the template to which individual-level data are registered. Defaults to the MNI template. Default: False
- Returns
- dict with: keys: names of template ROIs and values: nibabel Nifti1Image
- objects from each of the ROI nifti files.
- AFQ.data.fetch.read_stanford_hardi_tractography()[source]#
Reads a minimal tractography from the Stanford dataset.
- AFQ.data.fetch.organize_stanford_data(path=None, clear_previous_afq=None)[source]#
If necessary, downloads the Stanford HARDI dataset into DIPY directory and creates a BIDS compliant file-system structure in AFQ data directory:
~/AFQ_data/ └── stanford_hardi ├── dataset_description.json └── derivatives
├── freesurfer │ ├── dataset_description.json │ └── sub-01 │ └── ses-01 │ └── anat │ ├── sub-01_ses-01_T1w.nii.gz │ └── sub-01_ses-01_seg.nii.gz └── vistasoft
├── dataset_description.json └── sub-01
- └── ses-01
- └── dwi
├── sub-01_ses-01_dwi.bval ├── sub-01_ses-01_dwi.bvec └── sub-01_ses-01_dwi.nii.gz
- Parameters
- pathstr or None
Path to download dataset to, by default it is ~/AFQ_data/.
- clear_previous_afqstr or None
Whether to clear previous afq results in the stanford hardi dataset. If not None, can be “all”, “track”, “recog”, “prof”. Default: None