from dipy.align import resample
from dipy.segment.clustering import QuickBundles
from dipy.segment.metric import AveragePointwiseEuclideanMetric
from dipy.segment.featurespeed import ResampleFeature
from dipy.io.streamline import (
load_tractogram, save_tractogram, StatefulTractogram, Space)
from dipy.data.fetcher import _make_fetcher
import dipy.data as dpd
from AFQ.utils.path import drop_extension, apply_cmd_to_afq_derivs
import os
import os.path as op
import json
from glob import glob
import shutil
import numpy as np
import pandas as pd
import logging
import time
from tqdm import tqdm
import warnings
import nibabel as nib
import boto3
from botocore import UNSIGNED
from botocore.client import Config
# capture templateflow resource warning and log
default_warning_format = warnings.formatwarning
try:
warnings.formatwarning = lambda msg, *args, **kwargs: f'{msg}'
logging.captureWarnings(True)
pywarnings_logger = logging.getLogger('py.warnings')
console_handler = logging.StreamHandler()
console_handler.setFormatter(logging.Formatter(logging.BASIC_FORMAT))
pywarnings_logger.addHandler(console_handler)
warnings.filterwarnings(
"default", category=ResourceWarning,
module="templateflow")
from templateflow import api as tflow
finally:
logging.captureWarnings(False)
warnings.formatwarning = default_warning_format
__all__ = ["fetch_callosum_templates", "read_callosum_templates",
"fetch_or_templates", "read_or_templates",
"fetch_templates", "read_templates",
"fetch_stanford_hardi_tractography",
"read_stanford_hardi_tractography",
"organize_stanford_data",
"fetch_stanford_hardi_lv1"]
# Set a user-writeable file-system location to put files:
if 'AFQ_HOME' in os.environ:
afq_home = os.environ['AFQ_HOME']
else:
afq_home = op.join(op.expanduser('~'), 'AFQ_data')
baseurl = "https://ndownloader.figshare.com/files/"
def _make_reusable_fetcher(name, folder, baseurl, remote_fnames, local_fnames,
doc="", md5_list=None, **make_fetcher_kwargs):
def fetcher():
all_files_downloaded = True
for fname in local_fnames:
if not op.exists(op.join(folder, fname)):
all_files_downloaded = False
if all_files_downloaded:
files = {}
for i, (f, n), in enumerate(zip(remote_fnames, local_fnames)):
files[n] = (baseurl + f, md5_list[i] if
md5_list is not None else None)
return files, folder
else:
return _make_fetcher(
name, folder, baseurl, remote_fnames, local_fnames,
doc=doc, **make_fetcher_kwargs)()
fetcher.__name__ = name
fetcher.__doc__ = doc
return fetcher
def _fetcher_to_template(fetcher, as_img=False, resample_to=False):
if isinstance(resample_to, str):
resample_to = nib.load(resample_to)
files, folder = fetcher()
template_dict = {}
for f in files:
img = op.join(folder, f)
if as_img:
img = nib.load(img)
if resample_to:
img = nib.Nifti1Image(resample(img.get_fdata(),
resample_to,
img.affine,
resample_to.affine).get_fdata(),
resample_to.affine)
template_dict[drop_extension(f)] = img
return template_dict
callosum_fnames = ["Callosum_midsag.nii.gz",
"L_AntFrontal.nii.gz",
"L_Motor.nii.gz",
"L_Occipital.nii.gz",
"L_Orbital.nii.gz",
"L_PostParietal.nii.gz",
"L_SupFrontal.nii.gz",
"L_SupParietal.nii.gz",
"L_Temporal.nii.gz",
"R_AntFrontal.nii.gz",
"R_Motor.nii.gz",
"R_Occipital.nii.gz",
"R_Orbital.nii.gz",
"R_PostParietal.nii.gz",
"R_SupFrontal.nii.gz",
"R_SupParietal.nii.gz",
"R_Temporal.nii.gz"]
callosum_remote_fnames = ["5273794", "5273797", "5273800", "5273803",
"5273806", "5273809", "5273812", "5273815",
"5273821", "5273818", "5273824", "5273827",
"5273830", "5273833", "5273836", "5273839",
"5273842"]
callosum_md5_hashes = ["709fa90baadeacd64f1d62b5049a4125",
"987c6169de807c4e93dc2cbd7a25d506",
"0da114123d0b0097b96fe450a459550b",
"6d845bd10504f67f1dc17f9000076d7e",
"e16c7873ef4b08d26b77ef746dab8237",
"47193fd4df1ea17367817466de798b90",
"7e78bf9671e6945f4b2f5e7c30595a3c",
"8adbb947377ff7b484c88d8c0ffc2125",
"0fd981a4d0847e0642ff96e84fe44e47",
"87c4855efa406d8fb004cffb8259180e",
"c7969bcf5f2343fd9ce9c49b336cf14c",
"bb4372b88991932150205ffb22aa6cb7",
"d198d4e7db18ddc7236cf143ecb8342e",
"d0f6edef64b0c710c92e634496085dda",
"85eaee44665f244db5adae2e259833f6",
"25f24eb22879a05d12bda007c81ea55a",
"2664e0b8c2d9c59f13649a89bfcce399"]
[docs]fetch_callosum_templates = _make_reusable_fetcher(
"fetch_callosum_templates",
op.join(afq_home,
'callosum_templates'),
baseurl, callosum_remote_fnames,
callosum_fnames,
md5_list=callosum_md5_hashes,
doc="Download AFQ callosum templates")
[docs]def read_callosum_templates(as_img=True, resample_to=False):
"""Load AFQ callosum templates from file
Parameters
----------
as_img : bool, optional
If True, values are `Nifti1Image`. Otherwise, values are
paths to Nifti files. Default: True
resample_to : str or nibabel image class instance, optional
A template image to resample to. Typically, this should be the
template to which individual-level data are registered. Defaults to
the MNI template. Default: False
Returns
-------
dict with: keys: names of template ROIs and values: nibabel Nifti1Image
objects from each of the ROI nifti files.
"""
logger = logging.getLogger('AFQ')
logger.debug('loading callosum templates')
tic = time.perf_counter()
template_dict = _fetcher_to_template(
fetch_callosum_templates,
as_img=as_img,
resample_to=resample_to)
toc = time.perf_counter()
logger.debug(f'callosum templates loaded in {toc - tic:0.4f} seconds')
return template_dict
##########################################################################
# Pediatric templates:
# --------------------
#
# Templates include the UNC 0-1-2 Infant Atlases and waypoint ROIs matched
# to the atlas.
#
# Information on:
#
# - atlas: https://www.nitrc.org/projects/pediatricatlas
#
# Templates downloaded from:
#
# - https://figshare.com/articles/dataset/ROIs_probabilistic_maps_and_transform_data_for_pediatric_automated_fiber_quantification/13027487 # noqa
#
pediatric_fnames = [
"ATR_roi1_L.nii.gz", "ATR_roi1_R.nii.gz",
"ATR_roi2_L.nii.gz", "ATR_roi2_R.nii.gz",
"ATR_roi3_L.nii.gz", "ATR_roi3_R.nii.gz",
"CGC_roi1_L.nii.gz", "CGC_roi1_R.nii.gz",
"CGC_roi2_L.nii.gz", "CGC_roi2_R.nii.gz",
"CGC_roi3_L.nii.gz", "CGC_roi3_R.nii.gz",
"CST_roi1_L.nii.gz", "CST_roi1_R.nii.gz",
"CST_roi2_L.nii.gz", "CST_roi2_R.nii.gz",
"FA_L.nii.gz", "FA_R.nii.gz",
"FP_L.nii.gz", "FP_R.nii.gz",
"HCC_roi1_L.nii.gz", "HCC_roi1_R.nii.gz",
"HCC_roi2_L.nii.gz", "HCC_roi2_R.nii.gz",
"IFO_roi1_L.nii.gz", "IFO_roi1_R.nii.gz",
"IFO_roi2_L.nii.gz", "IFO_roi2_R.nii.gz",
"IFO_roi3_L.nii.gz", "IFO_roi3_R.nii.gz",
"ILF_roi1_L.nii.gz", "ILF_roi1_R.nii.gz",
"ILF_roi2_L.nii.gz", "ILF_roi2_R.nii.gz",
"LH_Parietal.nii.gz", "RH_Parietal.nii.gz",
"MdLF_roi1_L.nii.gz", "MdLF_roi1_R.nii.gz",
"SLF_roi1_L.nii.gz", "SLF_roi1_R.nii.gz",
"SLF_roi2_L.nii.gz", "SLF_roi2_R.nii.gz",
"SLFt_roi2_L.nii.gz", "SLFt_roi2_R.nii.gz",
"SLFt_roi3_L.nii.gz", "SLFt_roi3_R.nii.gz",
"UNC_roi1_L.nii.gz", "UNC_roi1_R.nii.gz",
"UNC_roi2_L.nii.gz", "UNC_roi2_R.nii.gz",
"UNC_roi3_L.nii.gz", "UNC_roi3_R.nii.gz",
"VOF_box_L.nii.gz", "VOF_box_R.nii.gz",
"UNCNeo-withCerebellum-for-babyAFQ.nii.gz",
"UNCNeo_JHU_tracts_prob-for-babyAFQ.nii.gz",
"mid-saggital.nii.gz",
"OR_rightV1.nii.gz",
"OR_rightThal.nii.gz",
"OR_right_roi3.nii.gz",
"OR_leftV1.nii.gz",
"OR_leftThal.nii.gz",
"OR_left_roi3.nii.gz",
"pARC_R_start.nii.gz",
"pARC_L_start.nii.gz",
"VOF_box_small_L.nii.gz",
"VOF_box_small_R.nii.gz",
"VOF_L_start.nii.gz",
"VOF_R_start.nii.gz",
]
pediatric_md5_hashes = [
"2efe0deb19ac9e175404bf0cb29d9dbd", "c2e07cd50699527bd7b0cbbe88703c56",
"76b36d8d6759df58131644281ed16bd2", "645102225bad33da30bafd41d24b3ab0",
"45ec94d42fdc9448afa6760c656920e9", "54e3cb1b8c242be279f1410d8bb3c383",
"1ee9f7e8b21ef8ceee81d5a7a178ef33", "4f11097f7ae317aa8d612511be79e2f1",
"1c4c0823c23b676d6d35004d93b9c695", "d4830d558cc8f707ebec912b32d197a5",
"c405e0dbd9a4091c77b3d1ad200229b4", "ec0aeccc6661d2ee5ed79259383cdcee",
"2802cd227b550f6e85df0fec1d515c29", "385addb999dc6d76957d2a35c4ee74bb",
"0dd14c02b272263adbe2246880979c9d", "99dac5a00c10d81d222f020162fd6194",
"e49ba370edca96734d9376f551d413db", "f59e9e69e06325198f70047cd63c3bdc",
"ae3bd2931f95adae0280a8f75cd3ca9b", "c409a0036b8c2dd4d03d11fbc6bfbdcd",
"c2597a474ea5ec9e3126c35fd238f6b2", "67af59c934147c9f9ff6e0b76c4cc6eb",
"72d0bbc0b6162e9291fdc450c103a1f0", "51f5041be63ad0ac10d1ac09e3bf1a8e",
"6200f5cdc1402dce46dedd505468b147", "83cb5bf6b9b1eda63c8643871e84a6d4",
"2a5d8d309b1256d6e48958e112201c2c", "ba24d0915fdff215a403480d0a7745c9",
"1001e833d1344274d543ffd02a66af80", "03e20c5eebcd4d439c4ffb36d26a10d9",
"6200f5cdc1402dce46dedd505468b147", "83cb5bf6b9b1eda63c8643871e84a6d4",
"a6ae325cce2dc4bb21b52ee4c6ca844f", "a96a31df8f96ccf1c5f871a18e4a2d72",
"65b7378ca85689a5f23b1b84a6ed78f0", "ce0d0ea696ef51c671aa118e11192e2d",
"ce4918086ca1e829698576bcf95db62b", "96168d2eff74ec2acf9065f499732526",
"6b20ba319d44472ec21d6ece937605bb", "26b1cf6ec8bd365dde42e3efe9beeac2",
"0b3ccf06564d973bfcfff9a87e74f8b5", "84f3426033a2b225b0920b2622864375",
"5351b3cb7efa9aa8e83e266342809ebe", "4e8a34aaba4e0f22a6149f38620dc39d",
"682c08f66e8c2cf9e4e60f5ce308c76c", "9077affd4f3a8a1d6b44678cde4b3bf4",
"5adf36f00669cc547d5eb978acf46266", "66a8002688ffdf3943722361da90ec6a",
"efb5ae138df92019541861f9aa6a4d57", "757ec61078b2e9f9a073871b3216ff7a",
"ff1e238c52a21f8cc5d44ac614d9627f", "cf16dd2767c6ab2d3fceb2890f6c3e41",
"6016621e244b60b9c69fd44b055e4a03", "fd495a2c94b6b13bfb4cd63e293d3fc0",
"bf81a23d80f55e5f1eb0c16717193105",
"6f8bf8f70216788d14d9a49a3c664b16",
"19df0297d6a2ac21da5e432645d63174",
"b4ffb957a2adbb8b76966e4ea28dbdf1",
"3de1bc5aae4c76164f34515e2e84939c",
"705ba1cbfc42ce64a54dda2b732f81f2",
"bc6d4f880d3eb281358af1c764779704",
"a3b6a7be067aa12af273482baee1498d",
"f035813314960eb91f3a4dae508a68e5",
"728461f81fcfa8f02ff3af969ab6499c",
"5c1c87ee71c512b38a0711b93bb7e9fe",
"4652bcf7a1f2b7cdeec52956eb884795",
"e1c4bf76d2c98dcf6ffe00399a6e8b07",
"0ecabd68fa9c56614e2a694359c0a545",
"4c93bea7a72ac2b7475201acef5a1fc4",
]
pediatric_remote_fnames = [
"24880625", "24880628", "24880631", "24880634", "24880637", "24880640",
"24880643", "24880646", "24880649", "24880652", "24880655", "24880661",
"24880664", "24880667", "46407571", "46407568", "24880676", "24880679",
"24880685", "24880688", "24880691", "24880694", "24880697", "24880700",
"24880703", "24880706", "24880712", "24880715", "24880718", "24880721",
"24880724", "24880727", "24880730", "24880733", "24880736", "24880748",
"24880739", "24880742", "24880754", "24880757", "24880760", "24880763",
"24880769", "24880772", "24880775", "24880778", "24880781", "24880787",
"24880790", "24880793", "24880796", "24880802", "24880805", "24880808",
"24880616", "24880613", "24986396",
"42120480",
"42120483",
"42120486",
"42120489",
"42120492",
"42120495",
"42121791",
"42121794",
"42121836",
"42121839",
"42121803",
"42121806",
]
fetch_pediatric_templates = _make_reusable_fetcher(
'fetch_pediatric_templates',
op.join(afq_home, 'pediatric_templates'),
'https://ndownloader.figshare.com/files/',
pediatric_remote_fnames,
pediatric_fnames,
md5_list=pediatric_md5_hashes,
doc='Download pediatric templates'
)
def read_pediatric_templates(as_img=True, resample_to=False):
"""
Load pediatric pyAFQ templates.
Used to create pediatric `bundle_dict`.
Parameters
----------
as_img : bool, optional
If True, values are `Nifti1Image`. Otherwise, values are
paths to Nifti files. Default: True
resample_to : str or nibabel image class instance, optional
A template image to resample to. Typically, this should be the
template to which individual-level data are registered. Defaults to
the MNI template. Default: False
Returns
-------
dict :
keys = names of template ROIs, and
values = `Nifti1Image` from each of the ROI nifti files.
"""
print('Loading pediatric templates...', flush=True)
pediatric_templates = _fetcher_to_template(
fetch_pediatric_templates,
as_img=as_img,
resample_to=resample_to)
# For the arcuate (AF/ARC), reuse the SLF ROIs
pediatric_templates['ARC_roi1_L'] = pediatric_templates['SLF_roi1_L']
pediatric_templates['ARC_roi1_R'] = pediatric_templates['SLF_roi1_R']
pediatric_templates['ARC_roi2_L'] = pediatric_templates['SLFt_roi3_L']
pediatric_templates['ARC_roi2_R'] = pediatric_templates['SLFt_roi3_R']
pediatric_templates['ARC_roi3_L'] = pediatric_templates['SLFt_roi2_L']
pediatric_templates['ARC_roi3_R'] = pediatric_templates['SLFt_roi2_R']
# For the middle longitudinal fasciculus (MdLF) reuse ILF ROI
pediatric_templates['MdLF_roi2_L'] = pediatric_templates['ILF_roi2_L']
pediatric_templates['MdLF_roi2_R'] = pediatric_templates['ILF_roi2_R']
return pediatric_templates
def read_resample_roi(roi, resample_to=None, threshold=False):
"""
Reads an roi from file-name/img and resamples it to conform with
another file-name/img.
Parameters
----------
roi : str or nibabel image class instance.
Should contain a binary volume with 1s in the region of interest and
0s elsewhere.
resample_to : str or nibabel image class instance, optional
A template image to resample to. Typically, this should be the
template to which individual-level data are registered. Defaults to
the MNI template.
threshold: bool or float
If set to False (default), resampled result is returned. Otherwise,
the resampled result is thresholded at this value and binarized.
This is not applied if the input ROI is already in the space of the
output.
Returns
-------
nibabel image class instance that contains the binary ROI resampled into
the requested space.
"""
if isinstance(roi, str):
roi = nib.load(roi)
if resample_to is None:
resample_to = read_mni_template()
if isinstance(resample_to, str):
resample_to = nib.load(resample_to)
if resample_to is False or np.allclose(resample_to.affine, roi.affine):
return roi
as_array = resample(
roi.get_fdata(),
resample_to,
roi.affine,
resample_to.affine).get_fdata()
if threshold:
as_array = (as_array > threshold).astype(int)
img = nib.Nifti1Image(
as_array,
resample_to.affine)
return img
template_fnames = ["ATR_roi1_L.nii.gz",
"ATR_roi1_R.nii.gz",
"ATR_roi2_L.nii.gz",
"ATR_roi2_R.nii.gz",
"ATR_L_prob_map.nii.gz",
"ATR_R_prob_map.nii.gz",
"CGC_roi1_L.nii.gz",
"CGC_roi1_R.nii.gz",
"CGC_roi2_L.nii.gz",
"CGC_roi2_R.nii.gz",
"CGC_L_prob_map.nii.gz",
"CGC_R_prob_map.nii.gz",
"CST_roi1_L.nii.gz",
"CST_roi1_R.nii.gz",
"CST_roi2_L.nii.gz",
"CST_roi2_R.nii.gz",
"CST_L_prob_map.nii.gz",
"CST_R_prob_map.nii.gz",
"FA_L.nii.gz",
"FA_R.nii.gz",
"FA_prob_map.nii.gz",
"FP_L.nii.gz",
"FP_R.nii.gz",
"FP_prob_map.nii.gz",
"HCC_roi1_L.nii.gz",
"HCC_roi1_R.nii.gz",
"HCC_roi2_L.nii.gz",
"HCC_roi2_R.nii.gz",
"HCC_L_prob_map.nii.gz",
"HCC_R_prob_map.nii.gz",
"IFO_roi1_L.nii.gz",
"IFO_roi1_R.nii.gz",
"IFO_roi2_L.nii.gz",
"IFO_roi2_R.nii.gz",
"IFO_L_prob_map.nii.gz",
"IFO_R_prob_map.nii.gz",
"ILF_roi1_L.nii.gz",
"ILF_roi1_R.nii.gz",
"ILF_roi2_L.nii.gz",
"ILF_roi2_R.nii.gz",
"ILF_L_prob_map.nii.gz",
"ILF_R_prob_map.nii.gz",
"SLF_roi1_L.nii.gz",
"SLF_roi1_R.nii.gz",
"SLF_roi2_L.nii.gz",
"SLF_roi2_R.nii.gz",
"SLFt_roi2_L.nii.gz",
"SLFt_roi2_R.nii.gz",
"SLF_L_prob_map.nii.gz",
"SLF_R_prob_map.nii.gz",
"UNC_roi1_L.nii.gz",
"UNC_roi1_R.nii.gz",
"UNC_roi2_L.nii.gz",
"UNC_roi2_R.nii.gz",
"UNC_L_prob_map.nii.gz",
"UNC_R_prob_map.nii.gz",
"ARC_L_prob_map.nii.gz",
"ARC_R_prob_map.nii.gz",
"VOF_R_end.nii.gz",
"VOF_R_start.nii.gz",
"VOF_L_end.nii.gz",
"VOF_L_start.nii.gz",
"pARC_R_start.nii.gz",
"pARC_L_start.nii.gz",
"ARC_R_end.nii.gz",
"ARC_R_start.nii.gz",
"ARC_L_end.nii.gz",
"ARC_L_start.nii.gz",
"UNC_R_end.nii.gz",
"UNC_R_start.nii.gz",
"UNC_L_end.nii.gz",
"UNC_L_start.nii.gz",
"SLF_R_end.nii.gz",
"SLF_R_start.nii.gz",
"SLF_L_end.nii.gz",
"SLF_L_start.nii.gz",
"ILF_R_end.nii.gz",
"ILF_R_start.nii.gz",
"ILF_L_end.nii.gz",
"ILF_L_start.nii.gz",
"IFO_R_end.nii.gz",
"IFO_R_start.nii.gz",
"IFO_L_end.nii.gz",
"IFO_L_start.nii.gz",
"FA_end.nii.gz",
"FA_start.nii.gz",
"FP_end.nii.gz",
"FP_start.nii.gz",
"CGC_R_start.nii.gz",
"CGC_L_start.nii.gz",
"CST_R_end.nii.gz",
"CST_R_start.nii.gz",
"CST_L_end.nii.gz",
"CST_L_start.nii.gz",
"ATR_R_end.nii.gz",
"ATR_R_start.nii.gz",
"ATR_L_end.nii.gz",
"ATR_L_start.nii.gz"]
template_remote_fnames = ["5273680", "5273683", "5273686", "5273689",
"11458274", "11458277",
"5273695", "5273692", "5273698", "5273701",
"11458268", "11458271",
"5273704", "5273707", "46407574", "46407577",
"11458262", "11458265",
"5273716", "5273719",
"11458220",
"5273722", "5273725",
"11458226",
"5273728", "5273731", "5273734", "5273746",
"11458259", "11458256",
"5273737", "5273740", "5273743", "5273749",
"11458250", "11458253",
"5273752", "5273755", "5273758", "5273761",
"11458244", "11458247",
"5273764", "5273767", "5273770", "5273773",
"5273776", "5273791",
"11458238", "11458241",
"5273779", "5273782", "5273785", "5273788",
"11458223", "11458229",
"11458232", "11458235",
"40943957",
"40943960",
"40943966",
"40943969",
"40943972",
"40943975",
"40943978",
"40943981",
"40943984",
"40943987",
"40943990",
"40943993",
"40943996",
"40943999",
"40944002",
"40944005",
"40944008",
"40944011",
"40944014",
"40944017",
"40944020",
"40944023",
"40944026",
"40944029",
"40944032",
"40944035",
"40944038",
"40944041",
"40944044",
"40944047",
"40944050",
"40944053",
"40944056",
"40944059",
"40944062",
"40944065",
"40944068",
"40944074",
"40944077",
"40944080"]
template_md5_hashes = ["6b7aaed1a2982fd0ea436a223133908b",
"fd60d46d4e3cbd906c86e4c9e4fd6e2a",
"3aba60b169a35c38640de4ec29d362c8",
"12716a5688a1809fbaed1d58d2e68b59",
"c5637f471df861d9bbb45604db34770b",
"850cc4c04d7241747063fe3cd440b2ce",
"8e8973bc7838c8744914d402f52d91ca",
"c5fa4e6e685e695c006823b6784d2407",
"e1fab77f21d5303ed52285f015e24f0b",
"5f89defec3753fd75cd688c7bfb20a36",
"a4f3cd65b06fb25f63d5dab7592f00f2",
"7e73ab02db30a3ad6bd9e82148c2486e",
"f9db3154955a20b67c2dda758800d14c",
"73941510c798c1ed1b03e2bd481cd5c7",
"b20e0caa54cf35002cd06cf6033b964f",
"e751306df304af32c3ce7617913bbd30",
"fd012bc89f6bed7bd54530195496bac4",
"3406906a86e633cc102127cf210a1063",
"9040a7953dcbbf131d135c866182d8ef",
"a72e17194824fcd838a594a2eb50c72e",
"627d7bb2e6d55f8243da815a36d9ff1a",
"55adbe9b8279185eedbe342149e1ff90",
"5a7412a3cf0fb185eec53d1989df2f7c",
"1aa36e83ae7b5555bb19d776ede9c18d",
"ba453196ff179b0e31172806e313b52c",
"d85c6574526b296935f34bf4f65cd493",
"9b81646317f59c7db087f27e2f85679e",
"9806e82c250e4604534b96917f87b7e8",
"213d3fb1ccd756d878f9b50b765b1c8f",
"f1e7e6bc51aa0aa279c54fb3805fb5e3",
"0e68a9feaaddcc9b4d667c2f15903368",
"d45020a87ee4bb496edd350631d91f6a",
"75c2c911826ec4b23159f9bd80e3c039",
"55d616ea9e0c646adc1aafa0f5fbe625",
"dee83fa6b03cfa5e0f5c965953aa6778",
"a13eef7059c98568adfefbab660e434e",
"045b7d5c6341997f3f0120c3a4212ad8",
"d174b1359ba982b03840436c93b7bbb4",
"fff9753f394fc4c73fb2ae40b3b4dde0",
"cd278b4dd6ff77481ea9ac16485a5ae2",
"7bdf5111265107091c7a2fca9215de30",
"7d4a43714504e6e930f922c9bc2a13d5",
"af2bcedf47e193686af329b9a8e259da",
"9a1122943579d11ba169d3ad87a75625",
"627903f7a06627bfd4153dc9245fa390",
"1714cd7f989c3435bdd5a2076e6272a0",
"1fa2114049707a4e05b53f9d95730375",
"b6663067d5ea53c70cb8803948f8adf7",
"d3e068997ebc60407bd6e9576e47dede",
"27ecfbd1d2f98213e52d73b7d70fe0e7",
"fa141bb2d951bec486916acda3652d95",
"d391d073e86e28588be9a6d01b2e7a82",
"a3e085562e6b8111c7ebc358f9450c8b",
"d65c67910807504735e034f7ea92d590",
"93cb24a9128db1a6c34a09eaf79fe7f0",
"71a7455cb4062dc39b1677c118c7b5a5",
"19590c712f1776da1fdba64d4eb7f1f6",
"04d5af0feb2c1b5b52a87ccbbf148e4b",
"53c277be990d00f7de04f2ea35e74d73",
"d37d815fd1bdaaf3a9d2dcfc3ccb1345",
"95ed3189d8ac152945e6be1eb24381a3",
"a9007e6f2d6ae13ef182f65057c06573",
"c6eb9ee33b7caf691749e266f89e8ec4",
"a06b2e2e52c09a601f683dc39859a7f1",
"bee876a34fdb03e69a418b791f90975a",
"680749c9e4565bc02492019d57d8e7d7",
"ffc157e9f73a43eff23821f2cfca614a",
"a92beacd59ff2c90408edc7407a571c4",
"1c0b570bb2d622718b01ee2c429a5d15",
"4d3db603f7cc86b5696b1514c5b43e0e",
"96c644616e8724b4d071c64981363e6c",
"9be681028226aa9b70fac46f8e376282",
"e19274bd1ee58906c03f5f9a7c4f01c5",
"1d33ac68aeb8eb444c07b5a853414727",
"ca3c698154d77217c9480123a49c73dd",
"b17d876c0ca51f0e3ec6177382aa4ecf",
"6ff7e2dd357affc7c4e4d79f5f5866e9",
"96c644616e8724b4d071c64981363e6c",
"de045095d914d4929409e062fc1a09b6",
"e19274bd1ee58906c03f5f9a7c4f01c5",
"69009da4aa52607962ec99b9e248a39f",
"2b106da3ed88e4cc9a5b4c391cf3445d",
"de045095d914d4929409e062fc1a09b6",
"0d28a8e367646f9f0036ba7a100e49e5",
"69009da4aa52607962ec99b9e248a39f",
"1c0b570bb2d622718b01ee2c429a5d15",
"ffc157e9f73a43eff23821f2cfca614a",
"69009da4aa52607962ec99b9e248a39f",
"de045095d914d4929409e062fc1a09b6",
"9d897a3ab960931c5119a9bbfc6d7838",
"0046be49e39cf8c639418c805de8b9e2",
"67d8f24bd749d8a9094ccb9d8e63fa25",
"5736d28551296253f879c4b0d450b70e",
"67d8f24bd749d8a9094ccb9d8e63fa25",
"5736d28551296253f879c4b0d450b70e",
"5f2c0c0f1b7b32ba0a8474a460a2b980",
"ffc157e9f73a43eff23821f2cfca614a",
"a8d308a93b26242c04b878c733cb252f",
"1c0b570bb2d622718b01ee2c429a5d15"]
[docs]fetch_templates = _make_reusable_fetcher(
"fetch_templates",
op.join(afq_home, 'templates'),
baseurl, template_remote_fnames,
template_fnames, md5_list=template_md5_hashes,
doc="Download AFQ templates")
[docs]def read_templates(as_img=True, resample_to=False):
"""Load AFQ templates from file
Parameters
----------
as_img : bool, optional
If True, values are `Nifti1Image`. Otherwise, values are
paths to Nifti files. Default: True
resample_to : str or nibabel image class instance, optional
A template image to resample to. Typically, this should be the
template to which individual-level data are registered. Defaults to
the MNI template. Default: False
Returns
-------
dict with: keys: names of template ROIs and values: nibabel Nifti1Image
objects from each of the ROI nifti files.
"""
logger = logging.getLogger('AFQ')
logger.debug('loading AFQ templates')
tic = time.perf_counter()
template_dict = _fetcher_to_template(
fetch_templates,
as_img=as_img,
resample_to=resample_to)
toc = time.perf_counter()
logger.debug(f'AFQ templates loaded in {toc - tic:0.4f} seconds')
return template_dict
cp_fnames = [
"ICP_L_inferior_prob.nii.gz",
"ICP_L_superior_prob.nii.gz",
"ICP_R_inferior_prob.nii.gz",
"ICP_R_superior_prob.nii.gz",
"MCP_L_inferior_prob.nii.gz",
"MCP_L_superior_prob.nii.gz",
"MCP_R_inferior_prob.nii.gz",
"MCP_R_superior_prob.nii.gz",
"SCP_L_inferior_prob.nii.gz",
"SCP_L_inter_prob.nii.gz",
"SCP_L_superior_prob.nii.gz",
"SCP_R_inferior_prob.nii.gz",
"SCP_R_inter_prob.nii.gz",
"SCP_R_superior_prob.nii.gz"]
cp_remote_fnames = [
"40897772",
"40897787",
"40897805",
"40897769",
"40897778",
"40897799",
"40897784",
"40897808",
"40897772",
"40897781",
"40897793",
"40897790",
"40897775",
"40897796"]
cp_md5_hashes = [
"7ec3a78f30aefe8c7e2a99773941b8f4",
"fc6b088f359201aff480d8e2f7b17eef",
"e9688ff4554b768f79a64731705107f9",
"f1959600d6aaae58d7ba4ce5e63c5e3b",
"e68c669d58bd2cbb3490bd952957009e",
"eb7643fd54f6046cd71b7ac085679594",
"746da79d0639630c1eb872b2895814ee",
"3f69b20a8a7dec4839cef461667d18a5",
"4d95b3d3804352eae6e66fe024f1baf5",
"a9410ab5fe3240cc8ef929062d54cc9e",
"531babda0dd284bda4a5b4b1303f8266",
"dde4907d7914dfe71ed07436b073bd75",
"c02f2fcb48c33fe4b2988087075e9566",
"62e32e090cd326790c3fdbc6acb8eb75"]
fetch_cp_templates = _make_reusable_fetcher(
"fetch_cb_templates",
op.join(afq_home,
'cp_templates'),
baseurl, cp_remote_fnames,
cp_fnames,
md5_list=cp_md5_hashes,
doc="Download AFQ cerebellar penducles templates")
def read_cp_templates(as_img=True, resample_to=False):
"""Load AFQ Cerebellar penducles templates from file
Parameters
----------
as_img : bool, optional
If True, values are `Nifti1Image`. Otherwise, values are
paths to Nifti files. Default: True
resample_to : str or nibabel image class instance, optional
A template image to resample to. Typically, this should be the
template to which individual-level data are registered. Defaults to
the MNI template. Default: False
Returns
-------
dict with: keys: names of template ROIs and values: nibabel Nifti1Image
objects from each of the ROI nifti files.
"""
logger = logging.getLogger('AFQ')
logger.debug('loading or templates')
tic = time.perf_counter()
template_dict = _fetcher_to_template(
fetch_cp_templates,
as_img=as_img,
resample_to=resample_to)
toc = time.perf_counter()
logger.debug(
f'Cerebellar peduncles templates loaded in {toc - tic:0.4f} seconds')
return template_dict
or_fnames = [
"left_thal_MNI.nii.gz",
"left_V1_MNI.nii.gz",
"right_thal_MNI.nii.gz",
"right_V1_MNI.nii.gz",
"left_OP_MNI.nii.gz",
"left_OR_1.nii.gz",
"left_OR_2.nii.gz",
"left_pos_thal_MNI.nii.gz",
"left_TP_MNI.nii.gz",
"right_OP_MNI.nii.gz",
"right_OR_1.nii.gz",
"right_OR_2.nii.gz",
"right_pos_thal_MNI.nii.gz",
"right_TP_MNI.nii.gz",
]
or_remote_fnames = [
"36514170",
"26831633",
"36514173",
"26831639",
"26831642",
"26831645",
"26831648",
"26831651",
"26831654",
"26831657",
"26831660",
"26831663",
"26831666",
"26831669",
]
or_md5_hashes = [
"a45126a727c4b5d843b2f7aae181825f",
"ad996c67bf5cc59fc3a7b60255873b67",
"7a75c3ddd25335277a099626dbc946ac",
"cc88fb4671311404eb9dfa8fa11a59e0",
"9cff03af586d9dd880750cef3e0bf63f",
"ff728ba3ffa5d1600bcd19fdef8182c4",
"4f1978e418a3169609375c28b3eba0fd",
"fd163893081b520f4594171aeea04f39",
"bf795d197912b5e074d248d2763c6930",
"13efde1efe0de52683cbf352ecba457e",
"75c7bd2092950578e599a2dcb218909f",
"8f3890fa8c26a568503226757f7e7d6c",
"f239aa3140809152da8884ff879dde1b",
"60a748567e4dd81b40ad8967a14cb09e",
]
ar_fnames = [
"AAL_Thal_R.nii.gz",
"AAL_Thal_L.nii.gz",
"AAL_TempSup_L.nii.gz",
"AAL_TempSup_R.nii.gz",
]
ar_remote_fnames = [
"43817367",
"43817370",
"43817373",
"43817376",
]
ar_md5_hashes = [
"5f2c0c0f1b7b32ba0a8474a460a2b980",
"a8d308a93b26242c04b878c733cb252f",
"92a255f706dd4e09268c5bc6bf2876e4",
"ec0a3ef3cb3a4c549dd783dc8aeceeee",
]
fetch_ar_templates = _make_reusable_fetcher(
"fetch_ar_templates",
op.join(afq_home,
'ar_templates'),
baseurl, ar_remote_fnames,
ar_fnames,
md5_list=ar_md5_hashes,
doc="Download AFQ or templates")
def read_ar_templates(as_img=True, resample_to=False):
"""Load AFQ AR templates from file
Parameters
----------
as_img : bool, optional
If True, values are `Nifti1Image`. Otherwise, values are
paths to Nifti files. Default: True
resample_to : str or nibabel image class instance, optional
A template image to resample to. Typically, this should be the
template to which individual-level data are registered. Defaults to
the MNI template. Default: False
Returns
-------
dict with: keys: names of template ROIs and values: nibabel Nifti1Image
objects from each of the ROI nifti files.
"""
logger = logging.getLogger('AFQ')
logger.debug('loading ar templates')
tic = time.perf_counter()
template_dict = _fetcher_to_template(
fetch_ar_templates,
as_img=as_img,
resample_to=resample_to)
toc = time.perf_counter()
logger.debug(f'or templates loaded in {toc - tic:0.4f} seconds')
return template_dict
[docs]fetch_or_templates = _make_reusable_fetcher(
"fetch_or_templates",
op.join(afq_home,
'or_templates'),
baseurl, or_remote_fnames,
or_fnames,
md5_list=or_md5_hashes,
doc="Download AFQ or templates")
[docs]def read_or_templates(as_img=True, resample_to=False):
"""Load AFQ OR templates from file
Parameters
----------
as_img : bool, optional
If True, values are `Nifti1Image`. Otherwise, values are
paths to Nifti files. Default: True
resample_to : str or nibabel image class instance, optional
A template image to resample to. Typically, this should be the
template to which individual-level data are registered. Defaults to
the MNI template. Default: False
Returns
-------
dict with: keys: names of template ROIs and values: nibabel Nifti1Image
objects from each of the ROI nifti files.
"""
logger = logging.getLogger('AFQ')
logger.debug('loading or templates')
tic = time.perf_counter()
template_dict = _fetcher_to_template(
fetch_or_templates,
as_img=as_img,
resample_to=resample_to)
toc = time.perf_counter()
logger.debug(f'or templates loaded in {toc - tic:0.4f} seconds')
return template_dict
stanford_hardi_tractography_remote_fnames = ["5325715", "5325718", "25289735"]
stanford_hardi_tractography_hashes = ['6f4bdae702031a48d1cd3811e7a42ef9',
'f20854b4f710577c58bd01072cfb4de6',
'294bfd1831861e8635eef8834ff18892']
stanford_hardi_tractography_fnames = [
'mapping.nii.gz',
'tractography_subsampled.trk',
'full_segmented_cleaned_tractography.trk']
[docs]fetch_stanford_hardi_tractography = _make_reusable_fetcher(
"fetch_stanford_hardi_tractography",
op.join(afq_home,
'stanford_hardi_tractography'),
baseurl,
stanford_hardi_tractography_remote_fnames,
stanford_hardi_tractography_fnames,
md5_list=stanford_hardi_tractography_hashes,
doc="""Download Stanford HARDI tractography and mapping. For testing
purposes""")
[docs]def read_stanford_hardi_tractography():
"""
Reads a minimal tractography from the Stanford dataset.
"""
files, folder = fetch_stanford_hardi_tractography()
files_dict = {}
files_dict['mapping.nii.gz'] = nib.load(
op.join(afq_home,
'stanford_hardi_tractography',
'mapping.nii.gz'))
# We need the original data as reference
dwi_img, gtab = dpd.read_stanford_hardi()
files_dict['tractography_subsampled.trk'] = load_tractogram(
op.join(afq_home,
'stanford_hardi_tractography',
'tractography_subsampled.trk'),
dwi_img,
bbox_valid_check=False,
trk_header_check=False).streamlines
files_dict['full_segmented_cleaned_tractography.trk'] = load_tractogram(
op.join(
afq_home,
'stanford_hardi_tractography',
'full_segmented_cleaned_tractography.trk'),
dwi_img).streamlines
return files_dict
def to_bids_description(path, fname='dataset_description.json',
BIDSVersion="1.4.0", **kwargs):
"""Dumps a dict into a bids description at the given location"""
kwargs.update({"BIDSVersion": BIDSVersion})
desc_file = op.join(path, fname)
with open(desc_file, 'w') as outfile:
json.dump(kwargs, outfile)
def organize_cfin_data(path=None):
"""
Create the expected file-system structure for the
CFIN multi b-value diffusion data-set.
"""
dpd.fetch_cfin_multib()
if path is None:
os.makedirs(afq_home, exist_ok=True)
path = afq_home
bids_path = op.join(path, 'cfin_multib',)
derivatives_path = op.join(bids_path, 'derivatives')
dmriprep_folder = op.join(derivatives_path, 'dmriprep')
if not op.exists(derivatives_path):
anat_folder = op.join(dmriprep_folder, 'sub-01', 'ses-01', 'anat')
os.makedirs(anat_folder, exist_ok=True)
dwi_folder = op.join(dmriprep_folder, 'sub-01', 'ses-01', 'dwi')
os.makedirs(dwi_folder, exist_ok=True)
t1_img = dpd.read_cfin_t1()
nib.save(t1_img, op.join(anat_folder, 'sub-01_ses-01_T1w.nii.gz'))
dwi_img, gtab = dpd.read_cfin_dwi()
nib.save(dwi_img, op.join(dwi_folder, 'sub-01_ses-01_dwi.nii.gz'))
np.savetxt(op.join(dwi_folder, 'sub-01_ses-01_dwi.bvec'), gtab.bvecs)
np.savetxt(op.join(dwi_folder, 'sub-01_ses-01_dwi.bval'), gtab.bvals)
to_bids_description(
bids_path,
**{"BIDSVersion": "1.0.0",
"Name": "CFIN",
"Subjects": ["sub-01"]})
to_bids_description(
dmriprep_folder,
**{"Name": "CFIN",
"PipelineDescription": {"Name": "dipy"},
"GeneratedBy": [{"Name": "dipy"}]})
[docs]def organize_stanford_data(path=None, clear_previous_afq=None):
"""
If necessary, downloads the Stanford HARDI dataset into DIPY directory and
creates a BIDS compliant file-system structure in AFQ data directory:
~/AFQ_data/
└── stanford_hardi
├── dataset_description.json
└── derivatives
├── freesurfer
│ ├── dataset_description.json
│ └── sub-01
│ └── ses-01
│ └── anat
│ ├── sub-01_ses-01_T1w.nii.gz
│ └── sub-01_ses-01_seg.nii.gz
└── vistasoft
├── dataset_description.json
└── sub-01
└── ses-01
└── dwi
├── sub-01_ses-01_dwi.bval
├── sub-01_ses-01_dwi.bvec
└── sub-01_ses-01_dwi.nii.gz
Parameters
----------
path : str or None
Path to download dataset to, by default it is ~/AFQ_data/.
clear_previous_afq : str or None
Whether to clear previous afq results in the stanford
hardi dataset. If not None, can be "all", "track", "recog", "prof".
Default: None
"""
logger = logging.getLogger('AFQ')
# fetches data for first subject and session
logger.info('fetching Stanford HARDI data')
dpd.fetch_stanford_hardi()
if path is None:
if not op.exists(afq_home):
logger.info(f'creating AFQ home directory: {afq_home}')
os.makedirs(afq_home, exist_ok=True)
path = afq_home
bids_path = op.join(path, 'stanford_hardi',)
derivatives_path = op.join(bids_path, 'derivatives')
dmriprep_folder = op.join(derivatives_path, 'vistasoft')
freesurfer_folder = op.join(derivatives_path, 'freesurfer')
if clear_previous_afq is not None and op.exists(derivatives_path):
afq_folder = op.join(derivatives_path, 'afq')
if clear_previous_afq == "all":
if op.exists(afq_folder):
shutil.rmtree(afq_folder)
else:
apply_cmd_to_afq_derivs(
op.join(afq_folder, "sub-01/ses-01"),
op.join(afq_folder, "sub-01/ses-01/sub-01_ses-01"),
dependent_on=clear_previous_afq)
if not op.exists(derivatives_path):
logger.info(f'creating derivatives directory: {derivatives_path}')
# anatomical data
anat_folder = op.join(freesurfer_folder, 'sub-01', 'ses-01', 'anat')
os.makedirs(anat_folder, exist_ok=True)
t1_img = dpd.read_stanford_t1()
nib.save(t1_img, op.join(anat_folder, 'sub-01_ses-01_T1w.nii.gz'))
seg_img = dpd.read_stanford_labels()[-1]
nib.save(seg_img, op.join(anat_folder,
'sub-01_ses-01_seg.nii.gz'))
# diffusion-weighted imaging data
dwi_folder = op.join(dmriprep_folder, 'sub-01', 'ses-01', 'dwi')
os.makedirs(dwi_folder, exist_ok=True)
dwi_img, gtab = dpd.read_stanford_hardi()
nib.save(dwi_img, op.join(dwi_folder, 'sub-01_ses-01_dwi.nii.gz'))
np.savetxt(op.join(dwi_folder, 'sub-01_ses-01_dwi.bvec'), gtab.bvecs)
np.savetxt(op.join(dwi_folder, 'sub-01_ses-01_dwi.bval'), gtab.bvals)
else:
logger.info('Dataset is already in place. If you want to fetch it '
+ 'again please first remove the folder '
+ derivatives_path)
# Dump out the description of the dataset
to_bids_description(bids_path,
**{"Name": "Stanford HARDI", "Subjects": ["sub-01"]})
# And descriptions of the pipelines in the derivatives:
to_bids_description(dmriprep_folder,
**{"Name": "Stanford HARDI",
"PipelineDescription": {"Name": "vistasoft"},
"GeneratedBy": [{"Name": "vistasoft"}]})
to_bids_description(freesurfer_folder,
**{"Name": "Stanford HARDI",
"PipelineDescription": {"Name": "freesurfer"},
"GeneratedBy": [{"Name": "freesurfer"}]})
[docs]fetch_stanford_hardi_lv1 = _make_reusable_fetcher(
"fetch_stanford_hardi_lv1",
op.join(afq_home,
'stanford_hardi',
'derivatives/freesurfer/sub-01/ses-01/anat'),
'https://stacks.stanford.edu/file/druid:ng782rw8378/',
["SUB1_LV1.nii.gz"],
["sub-01_ses-01_desc-LV1_anat.nii.gz"],
md5_list=["e403c602e53e5491414f86af5f08a913"],
doc="Download the LV1 segmentation for the Standord Hardi subject",
unzip=False)
fetch_hcp_atlas_16_bundles = _make_reusable_fetcher(
"fetch_hcp_atlas_16_bundles",
op.join(afq_home,
'hcp_atlas_16_bundles'),
'https://ndownloader.figshare.com/files/',
["11921522"],
["atlas_16_bundles.zip"],
md5_list=["b071f3e851f21ba1749c02fc6beb3118"],
doc="Download minimal Recobundles atlas",
unzip=True)
fetch_hcp_atlas_80_bundles = _make_reusable_fetcher(
"fetch_hcp_atlas_80_bundles",
op.join(afq_home,
'hcp_atlas_80_bundles'),
'https://ndownloader.figshare.com/files/',
["13638644"],
["Atlas_80_Bundles.zip"],
md5_list=["78331d527a10ec000d4f33bac472e099"],
doc="Download 80-bundle Recobundles atlas",
unzip=True)
def read_hcp_atlas(n_bundles=16, as_file=False):
"""
as_file : bool, optional
If True, values are paths to sls. Otherwise, the sl
are located and the centroids calculated. Default: False
n_bundles : int
16 or 80, which selects among the two different
atlases:
https://figshare.com/articles/Simple_model_bundle_atlas_for_RecoBundles/6483614 # noqa
https://figshare.com/articles/Advanced_Atlas_of_80_Bundles_in_MNI_space/7375883 # noqa
"""
bundle_dict = {}
if n_bundles == 16:
_, folder = fetch_hcp_atlas_16_bundles()
atlas_folder = "Atlas_in_MNI_Space_16_bundles"
elif n_bundles == 80:
_, folder = fetch_hcp_atlas_80_bundles()
atlas_folder = "Atlas_80_Bundles"
bundle_files = glob(
op.join(
folder,
atlas_folder,
"bundles", "*.trk"))
centroid_folder = op.join(
folder,
atlas_folder,
"centroid")
os.makedirs(centroid_folder, exist_ok=True)
for bundle_file in bundle_files:
bundle = drop_extension(op.split(bundle_file)[-1])
centroid_file = op.join(centroid_folder, f"{bundle}.trk")
bundle_dict[bundle] = {"recobundles": {}}
if not op.exists(centroid_file):
bundle_sl = load_tractogram(
bundle_file,
'same',
bbox_valid_check=False)
feature = ResampleFeature(nb_points=100)
metric = AveragePointwiseEuclideanMetric(feature)
qb = QuickBundles(np.inf, metric=metric)
cluster = [qb.cluster(bundle_sl.streamlines).centroids[0]]
save_tractogram(
StatefulTractogram(
cluster, bundle_sl, Space.RASMM),
centroid_file,
bbox_valid_check=False)
if not as_file:
bundle_dict[bundle]["recobundles"]['sl'] = load_tractogram(
bundle_file,
'same',
bbox_valid_check=False).streamlines
bundle_dict[bundle]["recobundles"]['centroid'] = load_tractogram(
centroid_file,
"same", bbox_valid_check=False).streamlines
else:
bundle_dict[bundle]["recobundles"]['sl'] = bundle_file
bundle_dict[bundle]["recobundles"]['centroid'] = centroid_file
# For some reason, this file-name has a 0 in it, instead of an O:
bundle_dict["IFOF_R"] = bundle_dict["IF0F_R"]
# In the 80-bundle case, there are two files, and both have identical
# content, so this is fine:
del bundle_dict["IF0F_R"]
return bundle_dict
fetch_aal_atlas = _make_reusable_fetcher(
"fetch_aal_atlas",
op.join(afq_home,
'aal_atlas'),
'https://ndownloader.figshare.com/files/',
["28416852",
"28416855"],
["MNI_AAL_AndMore.nii.gz",
"MNI_AAL.txt"],
md5_list=["69395b75a16f00294a80eb9428bf7855",
"59fd3284b17de2fbe411ca1c7afe8c65"],
doc="Download the AAL atlas",
unzip=False)
def read_aal_atlas(resample_to=None):
"""
Reads the AAL atlas [1]_.
Parameters
----------
template : nib.Nifti1Image class instance, optional
If provided, this is the template used and AAL atlas should be
registered and aligned to this template
.. [1] Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O,
Delcroix N, Mazoyer B, Joliot M. (2002). Automated anatomical
labeling of activations in SPM using a macroscopic anatomical
parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;
15(1):273-89.
"""
file_dict, folder = fetch_aal_atlas()
out_dict = {}
for f in file_dict:
if f.endswith('.txt'):
out_dict['labels'] = pd.read_csv(op.join(folder, f))
else:
out_dict['atlas'] = nib.load(op.join(folder, f))
if resample_to is not None:
data = out_dict['atlas'].get_fdata()
oo = []
for ii in range(data.shape[-1]):
oo.append(resample(
data[..., ii],
resample_to,
out_dict['atlas'].affine,
resample_to.affine).get_fdata())
out_dict['atlas'] = nib.Nifti1Image(np.stack(oo, -1),
resample_to.affine)
return out_dict
def _apply_mask(template_img, resolution=1):
"""
Helper function, gets MNI brain mask and applies it to template_img.
Parameters
----------
template_img : nib.Nifti1Image
Unmasked template
resolution : int, optional
Resolution of mask. Default: 1
Returns
-------
Masked template as nib.Nifti1Image
"""
mask_img = nib.load(str(tflow.get('MNI152NLin2009cAsym',
resolution=resolution,
desc='brain',
suffix='mask')))
template_data = template_img.get_fdata()
mask_data = mask_img.get_fdata()
if mask_data.shape != template_data.shape:
mask_img = nib.Nifti1Image(
resample(
mask_data,
template_data,
mask_img.affine,
template_img.affine).get_fdata(),
template_img.affine)
mask_data = mask_img.get_fdata()
out_data = template_data * mask_data
return nib.Nifti1Image(out_data, template_img.affine)
def read_mni_template(resolution=1, mask=True, weight="T2w"):
"""
Reads the MNI T1w or T2w template
Parameters
----------
resolution : int, optional.
Either 1 or 2, the resolution in mm of the voxels. Default: 1.
mask : bool, optional
Whether to mask the data with a brain-mask before returning the image.
Default : True
weight: str, optional
Which relaxation technique to use.
Should be either "T2w" or "T1w".
Default : "T2w"
Returns
-------
nib.Nifti1Image class instance
containing masked or unmasked T1w or template.
"""
template_img = nib.load(str(tflow.get('MNI152NLin2009cAsym',
desc=None,
resolution=resolution,
suffix=weight,
extension='nii.gz')))
if not mask:
return template_img
else:
return _apply_mask(template_img, resolution)
fetch_biobank_templates = \
_make_reusable_fetcher(
"fetch_biobank_templates",
op.join(afq_home,
'biobank_templates'),
"http://biobank.ctsu.ox.ac.uk/showcase/showcase/docs/",
["bmri_group_means.zip"],
["bmri_group_means.zip"],
data_size="1.1 GB",
doc="Download UK Biobank templates",
unzip=True)
def read_ukbb_fa_template(mask=True):
"""
Reads the UK Biobank FA template
Parameters
----------
mask : bool, optional
Whether to mask the data with a brain-mask before returning the image.
Default : True
Returns
-------
nib.Nifti1Image class instance containing the FA template.
"""
fa_folder = op.join(
afq_home,
'biobank_templates',
'UKBiobank_BrainImaging_GroupMeanTemplates'
)
fa_path = op.join(
fa_folder,
'dti_FA.nii.gz'
)
if not op.exists(fa_path):
logger = logging.getLogger('AFQ')
logger.warning(
"Downloading brain MRI group mean statistics from UK Biobank. "
+ "This download is approximately 1.1 GB. "
+ "It is currently necessary to access the FA template.")
files, folder = fetch_biobank_templates()
# remove zip
for filename in files:
os.remove(op.join(folder, filename))
# remove non-FA related directories
for filename in os.listdir(fa_folder):
full_path = op.join(fa_folder, filename)
if full_path != fa_path:
if os.path.isfile(full_path):
os.remove(full_path)
else:
shutil.rmtree(full_path)
template_img = nib.load(fa_path)
if not mask:
return template_img
else:
return _apply_mask(template_img, 1)
def fetch_hcp(subjects,
hcp_bucket='hcp-openaccess',
profile_name="hcp",
path=None,
study='HCP_1200',
aws_access_key_id=None,
aws_secret_access_key=None):
"""
Fetch HCP diffusion data and arrange it in a manner that resembles the
BIDS [1]_ specification.
Parameters
----------
subjects : list
Each item is an integer, identifying one of the HCP subjects
hcp_bucket : string, optional
The name of the HCP S3 bucket. Default: "hcp-openaccess"
profile_name : string, optional
The name of the AWS profile used for access. Default: "hcp"
path : string, optional
Path to save files into. Default: '~/AFQ_data'
study : string, optional
Which HCP study to grab. Default: 'HCP_1200'
aws_access_key_id : string, optional
AWS credentials to HCP AWS S3. Will only be used if `profile_name` is
set to False.
aws_secret_access_key : string, optional
AWS credentials to HCP AWS S3. Will only be used if `profile_name` is
set to False.
Returns
-------
dict with remote and local names of these files,
path to BIDS derivative dataset
Notes
-----
To use this function with its default setting, you need to have a
file '~/.aws/credentials', that includes a section:
[hcp]
AWS_ACCESS_KEY_ID=XXXXXXXXXXXXXXXX
AWS_SECRET_ACCESS_KEY=XXXXXXXXXXXXXXXX
The keys are credentials that you can get from HCP
(see https://wiki.humanconnectome.org/display/PublicData/How+To+Connect+to+Connectome+Data+via+AWS) # noqa
Local filenames are changed to match our expected conventions.
.. [1] Gorgolewski et al. (2016). The brain imaging data structure,
a format for organizing and describing outputs of neuroimaging
experiments. Scientific Data, 3::160044. DOI: 10.1038/sdata.2016.44.
"""
if profile_name:
boto3.setup_default_session(profile_name=profile_name)
elif aws_access_key_id is not None and aws_secret_access_key is not None:
boto3.setup_default_session(
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key)
else:
raise ValueError("Must provide either a `profile_name` or ",
"both `aws_access_key_id` and ",
"`aws_secret_access_key` as input to 'fetch_hcp'")
s3 = boto3.resource('s3')
bucket = s3.Bucket(hcp_bucket)
if path is None:
if not op.exists(afq_home):
os.mkdir(afq_home)
my_path = afq_home
else:
my_path = path
base_dir = op.join(my_path, study, 'derivatives', 'dmriprep')
if not os.path.exists(base_dir):
os.makedirs(base_dir, exist_ok=True)
data_files = {}
for subject in subjects:
# We make a single session folder per subject for this case, because
# AFQ api expects session structure:
sub_dir = op.join(base_dir, f'sub-{subject}')
sess_dir = op.join(sub_dir, "ses-01")
if not os.path.exists(sub_dir):
os.makedirs(os.path.join(sess_dir, 'dwi'), exist_ok=True)
os.makedirs(os.path.join(sess_dir, 'anat'), exist_ok=True)
data_files[op.join(sess_dir, 'dwi', f'sub-{subject}_dwi.bval')] =\
f'{study}/{subject}/T1w/Diffusion/bvals'
data_files[op.join(sess_dir, 'dwi', f'sub-{subject}_dwi.bvec')] =\
f'{study}/{subject}/T1w/Diffusion/bvecs'
data_files[op.join(sess_dir, 'dwi', f'sub-{subject}_dwi.nii.gz')] =\
f'{study}/{subject}/T1w/Diffusion/data.nii.gz'
data_files[op.join(sess_dir, 'anat', f'sub-{subject}_T1w.nii.gz')] =\
f'{study}/{subject}/T1w/T1w_acpc_dc.nii.gz'
data_files[op.join(sess_dir, 'anat',
f'sub-{subject}_aparc+aseg_seg.nii.gz')] =\
f'{study}/{subject}/T1w/aparc+aseg.nii.gz'
download_files = {}
for k in data_files.keys():
if not op.exists(k):
download_files[k] = data_files[k]
if len(download_files.keys()):
with tqdm(total=len(download_files.keys())) as pbar:
for k in download_files.keys():
pbar.set_description_str(f"Downloading {k}")
bucket.download_file(data_files[k], k)
pbar.update()
# Create the BIDS dataset description file text
hcp_acknowledgements = """Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.""", # noqa
to_bids_description(op.join(my_path, study),
**{"Name": study,
"Acknowledgements": hcp_acknowledgements,
"Subjects": subjects})
# Create the BIDS derivatives description file text
to_bids_description(base_dir,
**{"Name": study,
"Acknowledgements": hcp_acknowledgements,
"PipelineDescription": {'Name': 'dmriprep'},
"GeneratedBy": [{'Name': 'dmriprep'}]})
return data_files, op.join(my_path, study)
def fetch_hbn_preproc(subjects, path=None):
"""
Fetches data from the Healthy Brain Network POD2 study [1, 2]_.
Parameters
----------
subjects : list
Identifiers of the subjects to download.
For example: ["NDARAA112DMH", "NDARAA117NEJ"].
path : string, optional
Path to save files into. Default: '~/AFQ_data'
Returns
-------
dict with remote and local names of these files,
path to BIDS derivative dataset
Notes
-----
.. [1] Alexander LM, Escalera J, Ai L, et al. An open resource for
transdiagnostic research in pediatric mental health and learning
disorders. Sci Data. 2017;4:170181.
.. [2] Richie-Halford A, Cieslak M, Ai L, et al. An analysis-ready and
quality controlled resource for pediatric brain white-matter research.
Scientific Data. 2022;9(1):1-27.
"""
# Anonymous access:
client = boto3.client('s3', config=Config(signature_version=UNSIGNED))
if path is None:
if not op.exists(afq_home):
os.mkdir(afq_home)
my_path = afq_home
else:
my_path = path
base_dir = op.join(my_path, "HBN", 'derivatives', 'qsiprep')
if not os.path.exists(base_dir):
os.makedirs(base_dir, exist_ok=True)
data_files = {}
for subject in subjects:
initial_query = client.list_objects(
Bucket="fcp-indi",
Prefix=f"data/Projects/HBN/BIDS_curated/sub-{subject}/")
ses = initial_query['Contents'][0]["Key"].split('/')[5]
query = client.list_objects(
Bucket="fcp-indi",
Prefix=f"data/Projects/HBN/BIDS_curated/derivatives/qsiprep/sub-{subject}/") # noqa
file_list = [kk["Key"] for kk in query["Contents"]]
sub_dir = op.join(base_dir, f'sub-{subject}')
ses_dir = op.join(sub_dir, ses)
if not os.path.exists(sub_dir):
os.makedirs(os.path.join(sub_dir, 'anat'), exist_ok=True)
os.makedirs(os.path.join(sub_dir, 'figures'), exist_ok=True)
os.makedirs(os.path.join(ses_dir, 'dwi'), exist_ok=True)
os.makedirs(os.path.join(ses_dir, 'anat'), exist_ok=True)
for remote in file_list:
full = remote.split("Projects")[-1][1:].replace("/BIDS_curated", "")
local = op.join(my_path, full)
data_files[local] = remote
download_files = {}
for k in data_files.keys():
if not op.exists(k):
download_files[k] = data_files[k]
if len(download_files.keys()):
with tqdm(total=len(download_files.keys())) as pbar:
for k in download_files.keys():
pbar.set_description_str(f"Downloading {k}")
client.download_file("fcp-indi", download_files[k], k)
pbar.update()
# Create the BIDS dataset description file text
hbn_acknowledgements = """XXX""", # noqa
to_bids_description(op.join(my_path, "HBN"),
**{"Name": "HBN",
"Acknowledgements": hbn_acknowledgements,
"Subjects": subjects})
# Create the BIDS derivatives description file text
to_bids_description(base_dir,
**{"Name": "HBN",
"Acknowledgements": hbn_acknowledgements,
"PipelineDescription": {'Name': 'qsiprep'},
"GeneratedBy": [{'Name': 'qsiprep'}]})
return data_files, op.join(my_path, "HBN")
def fetch_hbn_afq(subjects, path=None):
"""
Fetches AFQ derivatives for Healthy Brain Network POD2 study [1, 2]_.
Parameters
----------
subjects : list
Identifiers of the subjects to download.
For example: ["NDARAA112DMH", "NDARAA117NEJ"].
path : string, optional
Path to save files into. Default: '~/AFQ_data'
Returns
-------
dict with remote and local names of these files,
path to BIDS derivative dataset
Notes
-----
.. [1] Alexander LM, Escalera J, Ai L, et al. An open resource for
transdiagnostic research in pediatric mental health and learning
disorders. Sci Data. 2017;4:170181.
.. [2] Richie-Halford A, Cieslak M, Ai L, et al. An analysis-ready and
quality controlled resource for pediatric brain white-matter research.
Scientific Data. 2022;9(1):1-27.
"""
# Anonymous access:
client = boto3.client('s3', config=Config(signature_version=UNSIGNED))
if path is None:
if not op.exists(afq_home):
os.mkdir(afq_home)
my_path = afq_home
else:
my_path = path
base_dir = op.join(my_path, "HBN", 'derivatives', 'afq')
if not os.path.exists(base_dir):
os.makedirs(base_dir, exist_ok=True)
data_files = {}
for subject in subjects:
initial_query = client.list_objects(
Bucket="fcp-indi",
Prefix=f"data/Projects/HBN/BIDS_curated/sub-{subject}/")
ses = initial_query['Contents'][0]["Key"].split('/')[5]
query = client.list_objects(
Bucket="fcp-indi",
Prefix=f"data/Projects/HBN/BIDS_curated/derivatives/afq/sub-{subject}/") # noqa
file_list = [kk["Key"] for kk in query["Contents"]]
sub_dir = op.join(base_dir, f'sub-{subject}')
ses_dir = op.join(sub_dir, ses)
for deriv_dir in ["bundles",
"clean_bundles",
"ROIs",
"tract_profile_plots",
"viz_bundles"]:
this_deriv = os.path.join(ses_dir, deriv_dir)
if not os.path.exists(this_deriv):
os.makedirs(this_deriv, exist_ok=True)
for remote in file_list:
full = remote.split("Projects")[-1][1:].replace("/BIDS_curated", "")
local = op.join(afq_home, full)
data_files[local] = remote
download_files = {}
for k in data_files.keys():
if not op.exists(k):
download_files[k] = data_files[k]
if len(download_files.keys()):
with tqdm(total=len(download_files.keys())) as pbar:
for k in download_files.keys():
pbar.set_description_str(f"Downloading {k}")
client.download_file("fcp-indi", download_files[k], k)
pbar.update()
# Create the BIDS dataset description file text
hbn_acknowledgements = """XXX""", # noqa
to_bids_description(op.join(my_path, "HBN"),
**{"Name": "HBN",
"Acknowledgements": hbn_acknowledgements,
"Subjects": subjects})
# Create the BIDS derivatives description file text
to_bids_description(base_dir,
**{"Name": "HBN",
"PipelineDescription": {'Name': 'afq'},
"GeneratedBy": [{'Name': 'afq'}]})
return data_files, op.join(my_path, "HBN")