AFQ.tasks.data#

Module Contents#

Functions#

get_data_gtab(dwi_data_file, bval_file, bvec_file[, ...])

DWI data as an ndarray for selected b values,

b0(dwi, gtab)

full path to a nifti file containing the mean b0

b0_mask(b0, brain_mask)

full path to a nifti file containing the

dti_fit(dti_params, gtab)

DTI TensorFit object

dti_params(brain_mask, data, gtab, bval_file, bvec_file)

full path to a nifti file containing parameters

fwdti_fit(fwdti_params, gtab)

Free-water DTI TensorFit object

fwdti_params(brain_mask, data, gtab)

Full path to a nifti file containing parameters

dki_fit(dki_params, gtab)

DKI DiffusionKurtosisFit object

dki_params(brain_mask, gtab, data)

full path to a nifti file containing

msdki_fit(msdki_params, gtab)

Mean Signal DKI DiffusionKurtosisFit object

msdki_params(brain_mask, gtab, data)

full path to a nifti file containing

msdki_msd(msdki_tf)

full path to a nifti file containing

msdki_msk(msdki_tf)

full path to a nifti file containing

csd_params(dwi, brain_mask, gtab, data[, ...])

full path to a nifti file containing

anisotropic_power_map(csd_params)

full path to a nifti file containing

csd_anisotropic_index(csd_params)

full path to a nifti file containing

gq(base_fname, gtab, dwi_affine, data[, ...])

full path to a nifti file containing

gq_pmap(gq_params)

full path to a nifti file containing

gq_ai(gq_params)

full path to a nifti file containing

rumba_model(gtab[, rumba_wm_response, ...])

fit for RUMBA-SD model as documented on dipy reconstruction options

rumba_params(rumba_model, data, brain_mask)

Takes the fitted RUMBA-SD model as input and returns

rumba_fit(rumba_model, rumba_params)

RUMBA FIT

rumba_f_csf(rumba_fit)

full path to a nifti file containing

rumba_f_gm(rumba_fit)

full path to a nifti file containing

rumba_f_wm(rumba_fit)

full path to a nifti file containing

opdt_params(base_fname, data, gtab, dwi_affine, brain_mask)

full path to a nifti file containing

opdt_pmap(opdt_params)

full path to a nifti file containing

opdt_ai(opdt_params)

full path to a nifti file containing

csa_params(base_fname, data, gtab, dwi_affine, brain_mask)

full path to a nifti file containing

csa_pmap(csa_params)

full path to a nifti file containing

csa_ai(csa_params)

full path to a nifti file containing

fwdti_fa(fwdti_tf)

full path to a nifti file containing the Free-water DTI fractional

fwdti_md(fwdti_tf)

full path to a nifti file containing the Free-water DTI mean diffusivity

fwdti_fwf(fwdti_tf)

full path to a nifti file containing the Free-water DTI free water fraction

dti_fa(dti_tf)

full path to a nifti file containing

dti_lt(dti_tf, dwi_affine)

Image of first element in the DTI tensor according to DIPY convention

dti_cfa(dti_tf)

full path to a nifti file containing

dti_pdd(dti_tf)

full path to a nifti file containing

dti_md(dti_tf)

full path to a nifti file containing

dti_ga(dti_tf)

full path to a nifti file containing

dti_rd(dti_tf)

full path to a nifti file containing

dti_ad(dti_tf)

full path to a nifti file containing

dki_kt(dki_tf, dwi_affine)

Image of first element in the DKI kurtosis model,

dki_lt(dki_tf, dwi_affine)

Image of first element in the DTI tensor from DKI,

dki_fa(dki_tf)

full path to a nifti file containing

dki_md(dki_tf)

full path to a nifti file containing

dki_awf(dki_params[, sphere, gtol])

full path to a nifti file containing

dki_mk(dki_tf)

full path to a nifti file containing

dki_kfa(dki_tf)

full path to a nifti file containing

dki_ga(dki_tf)

full path to a nifti file containing

dki_rd(dki_tf)

full path to a nifti file containing

dki_ad(dki_tf)

full path to a nifti file containing

dki_rk(dki_tf)

full path to a nifti file containing

dki_ak(dki_tf)

full path to a nifti file containing

brain_mask(b0[, brain_mask_definition])

full path to a nifti file containing

get_bundle_dict(segmentation_params, brain_mask, b0[, ...])

Dictionary defining the different bundles to be segmented,

get_data_plan(kwargs)

Attributes#

AFQ.tasks.data.logger[source]#
AFQ.tasks.data.DIPY_GH = 'https://github.com/dipy/dipy/blob/master/dipy/'[source]#
AFQ.tasks.data.get_data_gtab(dwi_data_file, bval_file, bvec_file, min_bval=None, max_bval=None, filter_b=True, b0_threshold=50)[source]#

DWI data as an ndarray for selected b values, A DIPY GradientTable with all the gradient information, and DWI data in a Nifti1Image, and the affine transformation of the DWI data.

Parameters
min_bvalfloat, optional

Minimum b value you want to use from the dataset (other than b0), inclusive. If None, there is no minimum limit. Default: None

max_bvalfloat, optional

Maximum b value you want to use from the dataset (other than b0), inclusive. If None, there is no maximum limit. Default: None

filter_bbool, optional

Whether to filter the DWI data based on min or max bvals. Default: True

b0_thresholdint, optional

The value of b under which it is considered to be b0. Default: 50.

AFQ.tasks.data.b0(dwi, gtab)[source]#

full path to a nifti file containing the mean b0

AFQ.tasks.data.b0_mask(b0, brain_mask)[source]#

full path to a nifti file containing the mean b0 after applying the brain mask

AFQ.tasks.data.dti_fit(dti_params, gtab)[source]#

DTI TensorFit object

AFQ.tasks.data.dti_params(brain_mask, data, gtab, bval_file, bvec_file, b0_threshold=50, robust_tensor_fitting=False)[source]#

full path to a nifti file containing parameters for the DTI fit

Parameters
robust_tensor_fittingbool, optional

Whether to use robust_tensor_fitting when doing dti. Only applies to dti. Default: False

b0_thresholdint, optional

The value of b under which it is considered to be b0. Default: 50.

AFQ.tasks.data.fwdti_fit(fwdti_params, gtab)[source]#

Free-water DTI TensorFit object

AFQ.tasks.data.fwdti_params(brain_mask, data, gtab)[source]#

Full path to a nifti file containing parameters for the free-water DTI fit.

AFQ.tasks.data.dki_fit(dki_params, gtab)[source]#

DKI DiffusionKurtosisFit object

AFQ.tasks.data.dki_params(brain_mask, gtab, data)[source]#

full path to a nifti file containing parameters for the DKI fit

AFQ.tasks.data.msdki_fit(msdki_params, gtab)[source]#

Mean Signal DKI DiffusionKurtosisFit object

AFQ.tasks.data.msdki_params(brain_mask, gtab, data)[source]#

full path to a nifti file containing parameters for the Mean Signal DKI fit

AFQ.tasks.data.msdki_msd(msdki_tf)[source]#

full path to a nifti file containing the MSDKI mean signal diffusivity

AFQ.tasks.data.msdki_msk(msdki_tf)[source]#

full path to a nifti file containing the MSDKI mean signal kurtosis

AFQ.tasks.data.csd_params(dwi, brain_mask, gtab, data, csd_response=None, csd_sh_order=None, csd_lambda_=1, csd_tau=0.1, csd_fa_thr=0.7)[source]#

full path to a nifti file containing parameters for the CSD fit

Parameters
csd_responsetuple or None, optional.

The response function to be used by CSD, as a tuple with two elements. The first is the eigen-values as an (3,) ndarray and the second is the signal value for the response function without diffusion-weighting (i.e. S0). If not provided, auto_response will be used to calculate these values. Default: None

csd_sh_orderint or None, optional.

default: infer the number of parameters from the number of data volumes, but no larger than 8. Default: None

csd_lambda_float, optional.

weight given to the constrained-positivity regularization part of the deconvolution equation. Default: 1

csd_taufloat, optional.

threshold controlling the amplitude below which the corresponding fODF is assumed to be zero. Ideally, tau should be set to zero. However, to improve the stability of the algorithm, tau is set to tau*100 percent of the mean fODF amplitude (here, 10 percent by default) (see [1]). Default: 0.1

csd_fa_thrfloat, optional.

The threshold on the FA used to calculate the single shell auto response. Can be useful to reduce for baby subjects. Default: 0.7

References

1

Tournier, J.D., et al. NeuroImage 2007. Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution

AFQ.tasks.data.anisotropic_power_map(csd_params)[source]#

full path to a nifti file containing the anisotropic power map

AFQ.tasks.data.csd_anisotropic_index(csd_params)[source]#

full path to a nifti file containing the anisotropic index

AFQ.tasks.data.gq(base_fname, gtab, dwi_affine, data, gq_sampling_length=1.2)[source]#

full path to a nifti file containing parameters for the Generalized Q-Sampling shm_coeff, full path to a nifti file containing isotropic diffusion component, full path to a nifti file containing anisotropic diffusion component

Parameters
gq_sampling_lengthfloat

Diffusion sampling length. Default: 1.2

AFQ.tasks.data.gq_pmap(gq_params)[source]#

full path to a nifti file containing the anisotropic power map from GQ

AFQ.tasks.data.gq_ai(gq_params)[source]#

full path to a nifti file containing the anisotropic index from GQ

AFQ.tasks.data.rumba_model(gtab, rumba_wm_response=[0.0017, 0.0002, 0.0002], rumba_gm_response=0.0008, rumba_csf_response=0.003, rumba_n_iter=600)[source]#

fit for RUMBA-SD model as documented on dipy reconstruction options

Parameters
rumba_wm_response: 1D or 2D ndarray or AxSymShResponse.

Able to take response[0] from auto_response_ssst. default: array([0.0017, 0.0002, 0.0002])

rumba_gm_response: float, optional

Mean diffusivity for GM compartment. If None, then grey matter volume fraction is not computed. Default: 0.8e-3

rumba_csf_response: float, optional

Mean diffusivity for CSF compartment. If None, then CSF volume fraction is not computed. Default: 3.0e-3

rumba_n_iter: int, optional

Number of iterations for fODF estimation. Must be a positive int. Default: 600

AFQ.tasks.data.rumba_params(rumba_model, data, brain_mask)[source]#

Takes the fitted RUMBA-SD model as input and returns the spherical harmonics coefficients (SHM).

AFQ.tasks.data.rumba_fit(rumba_model, rumba_params)[source]#

RUMBA FIT

AFQ.tasks.data.rumba_f_csf(rumba_fit)[source]#

full path to a nifti file containing the CSF volume fraction for each voxel.

AFQ.tasks.data.rumba_f_gm(rumba_fit)[source]#

full path to a nifti file containing the GM volume fraction for each voxel.

AFQ.tasks.data.rumba_f_wm(rumba_fit)[source]#

full path to a nifti file containing the white matter volume fraction for each voxel.

AFQ.tasks.data.opdt_params(base_fname, data, gtab, dwi_affine, brain_mask, opdt_sh_order=8)[source]#

full path to a nifti file containing parameters for the Orientation Probability Density Transform shm_coeff, full path to a nifti file containing GFA

Parameters
opdt_sh_orderint

Spherical harmonics order for OPDT model. Must be even. Default: 8

AFQ.tasks.data.opdt_pmap(opdt_params)[source]#

full path to a nifti file containing the anisotropic power map from OPDT

AFQ.tasks.data.opdt_ai(opdt_params)[source]#

full path to a nifti file containing the anisotropic index from OPDT

AFQ.tasks.data.csa_params(base_fname, data, gtab, dwi_affine, brain_mask, csa_sh_order=8)[source]#

full path to a nifti file containing parameters for the Constant Solid Angle shm_coeff, full path to a nifti file containing GFA

Parameters
csa_sh_orderint

Spherical harmonics order for CSA model. Must be even. Default: 8

AFQ.tasks.data.csa_pmap(csa_params)[source]#

full path to a nifti file containing the anisotropic power map from CSA

AFQ.tasks.data.csa_ai(csa_params)[source]#

full path to a nifti file containing the anisotropic index from CSA

AFQ.tasks.data.fwdti_fa(fwdti_tf)[source]#

full path to a nifti file containing the Free-water DTI fractional anisotropy

AFQ.tasks.data.fwdti_md(fwdti_tf)[source]#

full path to a nifti file containing the Free-water DTI mean diffusivity

AFQ.tasks.data.fwdti_fwf(fwdti_tf)[source]#

full path to a nifti file containing the Free-water DTI free water fraction

AFQ.tasks.data.dti_fa(dti_tf)[source]#

full path to a nifti file containing the DTI fractional anisotropy

AFQ.tasks.data.dti_lt(dti_tf, dwi_affine)[source]#

Image of first element in the DTI tensor according to DIPY convention i.e. Dxx (rate of diffusion from the left to right side of the brain), Image of second element in the DTI tensor according to DIPY convention i.e. Dyy (rate of diffusion from the posterior to anterior part of the brain), Image of third element in the DTI tensor according to DIPY convention i.e. Dzz (rate of diffusion from the inferior to superior part of the brain), Image of fourth element in the DTI tensor according to DIPY convention i.e. Dxy (rate of diffusion in the xy plane indicating the relationship between the x and y directions), Image of fifth element in the DTI tensor according to DIPY convention i.e. Dxz (rate of diffusion in the xz plane indicating the relationship between the x and z directions), Image of sixth element in the DTI tensor according to DIPY convention i.e. Dyz (rate of diffusion in the yz plane indicating the relationship between the y and z directions)

AFQ.tasks.data.dti_cfa(dti_tf)[source]#

full path to a nifti file containing the DTI color fractional anisotropy

AFQ.tasks.data.dti_pdd(dti_tf)[source]#

full path to a nifti file containing the DTI principal diffusion direction

AFQ.tasks.data.dti_md(dti_tf)[source]#

full path to a nifti file containing the DTI mean diffusivity

AFQ.tasks.data.dti_ga(dti_tf)[source]#

full path to a nifti file containing the DTI geodesic anisotropy

AFQ.tasks.data.dti_rd(dti_tf)[source]#

full path to a nifti file containing the DTI radial diffusivity

AFQ.tasks.data.dti_ad(dti_tf)[source]#

full path to a nifti file containing the DTI axial diffusivity

AFQ.tasks.data.dki_kt(dki_tf, dwi_affine)[source]#

Image of first element in the DKI kurtosis model, Image of second element in the DKI kurtosis model, Image of third element in the DKI kurtosis model, Image of fourth element in the DKI kurtosis model, Image of fifth element in the DKI kurtosis model, Image of sixth element in the DKI kurtosis model, Image of seventh element in the DKI kurtosis model, Image of eighth element in the DKI kurtosis model, Image of ninth element in the DKI kurtosis model, Image of tenth element in the DKI kurtosis model, Image of eleventh element in the DKI kurtosis model, Image of twelfth element in the DKI kurtosis model, Image of thirteenth element in the DKI kurtosis model, Image of fourteenth element in the DKI kurtosis model, Image of fifteenth element in the DKI kurtosis model

AFQ.tasks.data.dki_lt(dki_tf, dwi_affine)[source]#

Image of first element in the DTI tensor from DKI, Image of second element in the DTI tensor from DKI, Image of third element in the DTI tensor from DKI, Image of fourth element in the DTI tensor from DKI, Image of fifth element in the DTI tensor from DKI, Image of sixth element in the DTI tensor from DKI

AFQ.tasks.data.dki_fa(dki_tf)[source]#

full path to a nifti file containing the DKI fractional anisotropy

AFQ.tasks.data.dki_md(dki_tf)[source]#

full path to a nifti file containing the DKI mean diffusivity

AFQ.tasks.data.dki_awf(dki_params, sphere='repulsion100', gtol=0.01)[source]#

full path to a nifti file containing the DKI axonal water fraction

Parameters
sphereSphere class instance, optional

The sphere providing sample directions for the initial search of the maximal value of kurtosis. Default: ‘repulsion100’

gtolfloat, optional

This input is to refine kurtosis maxima under the precision of the directions sampled on the sphere class instance. The gradient of the convergence procedure must be less than gtol before successful termination. If gtol is None, fiber direction is directly taken from the initial sampled directions of the given sphere object. Default: 1e-2

AFQ.tasks.data.dki_mk(dki_tf)[source]#

full path to a nifti file containing the DKI mean kurtosis file

AFQ.tasks.data.dki_kfa(dki_tf)[source]#

full path to a nifti file containing the DKI kurtosis FA file

References

Hansen2019

Hansen B. An Introduction to Kurtosis Fractional

Anisotropy. AJNR Am J Neuroradiol. 2019 Oct;40(10):1638-1641. doi: 10.3174/ajnr.A6235. Epub 2019 Sep 26. PMID: 31558496; PMCID: PMC7028548.

AFQ.tasks.data.dki_ga(dki_tf)[source]#

full path to a nifti file containing the DKI geodesic anisotropy

AFQ.tasks.data.dki_rd(dki_tf)[source]#

full path to a nifti file containing the DKI radial diffusivity

AFQ.tasks.data.dki_ad(dki_tf)[source]#

full path to a nifti file containing the DKI axial diffusivity

AFQ.tasks.data.dki_rk(dki_tf)[source]#

full path to a nifti file containing the DKI radial kurtosis

AFQ.tasks.data.dki_ak(dki_tf)[source]#

full path to a nifti file containing the DKI axial kurtosis file

AFQ.tasks.data.brain_mask(b0, brain_mask_definition=None)[source]#

full path to a nifti file containing the brain mask

Parameters
brain_mask_definitioninstance from AFQ.definitions.image, optional

This will be used to create the brain mask, which gets applied before registration to a template. If you want no brain mask to be applied, use FullImage. If None, use B0Image() Default: None

AFQ.tasks.data.get_bundle_dict(segmentation_params, brain_mask, b0, bundle_info=None, reg_template_spec='mni_T1')[source]#

Dictionary defining the different bundles to be segmented, and a Nifti1Image containing the template for registration

Parameters
bundle_infodict or BundleDict, optional

A dictionary or BundleDict for use in segmentation. See Defining Custom Bundle Dictionaries in the usage section of pyAFQ’s documentation for details. If None, will get all appropriate bundles for the chosen segmentation algorithm. Default: None

reg_template_specstr, or Nifti1Image, optional

The target image data for registration. Can either be a Nifti1Image, a path to a Nifti1Image, or if “mni_T2”, “dti_fa_template”, “hcp_atlas”, or “mni_T1”, image data will be loaded automatically. If “hcp_atlas” is used, slr registration will be used and reg_subject should be “subject_sls”. Default: “mni_T1”

AFQ.tasks.data.get_data_plan(kwargs)[source]#