Note
Go to the end to download the full example code.
Using RecoBundles for bundle recognition#
For bundle recognition, pyAFQ defaults to use the waypoint ROI approach described in [Yeatman2012]. However, as an alternative approach, pyAFQ also supports using the RecoBundles algorithm [Garyfallidis2017], which uses an atlas of bundles in streamlines. This example shows how to use RecoBundles for bundle recognition.
The code closely resembles the code used in sphx_glr_tutorial_examples_plot_001-plot_afq_api.py.
import os.path as op
import AFQ.data.fetch as afd
from AFQ.api.group import GroupAFQ
import AFQ.api.bundle_dict as abd
afd.organize_stanford_data(clear_previous_afq="track")
tracking_params = dict(n_seeds=25000,
random_seeds=True,
rng_seed=42)
Defining the segmentation params#
We also refer to bundle recognition as the “segmentation” of the tractogram. Parameters of this process are set through a dictionary input to the segmentation_params argument of the GroupAFQ object. In this case, we use abd.reco_bd(16), which tells pyAFQ to use the RecoBundles algorithm for bundle recognition.
myafq = GroupAFQ(
output_dir=op.join(afd.afq_home, 'stanford_hardi', 'derivatives',
'recobundles'),
bids_path=op.join(afd.afq_home, 'stanford_hardi'),
# Set the algorithm to use RecoBundles for bundle recognition:
bundle_info=abd.reco_bd(16),
preproc_pipeline='vistasoft',
tracking_params=tracking_params,
viz_backend_spec='plotly_no_gif')
fig_files = myafq.export_all()
0%| | 0/12916 [00:00<?, ? MB/s]
0%| | 5/12916 [00:00<07:26, 28.91 MB/s]
0%| | 24/12916 [00:00<02:48, 76.31 MB/s]
1%| | 95/12916 [00:00<00:56, 228.31 MB/s]
3%|▎ | 386/12916 [00:00<00:15, 800.29 MB/s]
6%|▌ | 769/12916 [00:00<00:07, 1543.42 MB/s]
8%|▊ | 1090/12916 [00:00<00:06, 1834.92 MB/s]
10%|█ | 1311/12916 [00:01<00:06, 1779.78 MB/s]
14%|█▎ | 1747/12916 [00:01<00:04, 2430.31 MB/s]
16%|█▌ | 2019/12916 [00:01<00:05, 2092.63 MB/s]
19%|█▉ | 2455/12916 [00:01<00:03, 2636.75 MB/s]
21%|██▏ | 2753/12916 [00:01<00:04, 2294.55 MB/s]
24%|██▍ | 3108/12916 [00:01<00:04, 2201.13 MB/s]
27%|██▋ | 3527/12916 [00:01<00:03, 2642.50 MB/s]
30%|██▉ | 3823/12916 [00:02<00:03, 2311.24 MB/s]
32%|███▏ | 4143/12916 [00:02<00:04, 2147.35 MB/s]
36%|███▌ | 4591/12916 [00:02<00:03, 2652.21 MB/s]
38%|███▊ | 4891/12916 [00:02<00:03, 2331.67 MB/s]
41%|████▏ | 5330/12916 [00:02<00:02, 2791.50 MB/s]
44%|████▎ | 5645/12916 [00:02<00:02, 2435.87 MB/s]
46%|████▋ | 5979/12916 [00:02<00:02, 2634.58 MB/s]
49%|████▉ | 6342/12916 [00:03<00:02, 2440.12 MB/s]
52%|█████▏ | 6755/12916 [00:03<00:02, 2825.45 MB/s]
55%|█████▍ | 7066/12916 [00:03<00:02, 2450.71 MB/s]
58%|█████▊ | 7514/12916 [00:03<00:01, 2915.41 MB/s]
61%|██████ | 7839/12916 [00:03<00:02, 2528.68 MB/s]
64%|██████▎ | 8221/12916 [00:03<00:01, 2404.18 MB/s]
67%|██████▋ | 8638/12916 [00:03<00:01, 2787.35 MB/s]
69%|██████▉ | 8947/12916 [00:04<00:01, 2439.20 MB/s]
72%|███████▏ | 9307/12916 [00:04<00:01, 2310.21 MB/s]
75%|███████▌ | 9741/12916 [00:04<00:01, 2746.89 MB/s]
78%|███████▊ | 10047/12916 [00:04<00:01, 2405.10 MB/s]
80%|████████ | 10383/12916 [00:04<00:01, 2242.49 MB/s]
83%|████████▎ | 10715/12916 [00:04<00:00, 2284.27 MB/s]
85%|████████▌ | 11010/12916 [00:04<00:00, 2284.40 MB/s]
88%|████████▊ | 11429/12916 [00:05<00:00, 2719.27 MB/s]
91%|█████████ | 11722/12916 [00:05<00:00, 2350.29 MB/s]
93%|█████████▎| 12059/12916 [00:05<00:00, 2584.17 MB/s]
96%|█████████▌| 12378/12916 [00:05<00:00, 2338.89 MB/s]
99%|█████████▉| 12765/12916 [00:05<00:00, 2679.92 MB/s]
100%|██████████| 12916/12916 [00:05<00:00, 2279.14 MB/s]
/opt/hostedtoolcache/Python/3.12.9/x64/lib/python3.12/site-packages/AFQ/tasks/data.py:88: UserWarning:
Pass ['bvecs'] as keyword args. From version 2.0.0 passing these as positional arguments will result in an error.
Optimizing level 2 [max iter: 10000]
Optimizing level 1 [max iter: 1000]
Optimizing level 0 [max iter: 100]
Optimizing level 2 [max iter: 10000]
Optimizing level 1 [max iter: 1000]
Optimizing level 0 [max iter: 100]
Optimizing level 2 [max iter: 10000]
Optimizing level 1 [max iter: 1000]
Optimizing level 0 [max iter: 100]
0it [00:00, ?it/s]
28it [00:00, 269.48it/s]
55it [00:00, 239.29it/s]
80it [00:00, 216.76it/s]
104it [00:00, 223.51it/s]
128it [00:00, 227.02it/s]
151it [00:00, 215.29it/s]
177it [00:00, 225.69it/s]
200it [00:00, 221.54it/s]
223it [00:01, 214.38it/s]
245it [00:01, 213.65it/s]
270it [00:01, 222.31it/s]
293it [00:01, 218.22it/s]
315it [00:01, 212.74it/s]
337it [00:01, 206.65it/s]
363it [00:01, 221.26it/s]
387it [00:01, 226.31it/s]
412it [00:01, 232.70it/s]
436it [00:01, 227.77it/s]
459it [00:02, 219.12it/s]
483it [00:02, 224.26it/s]
506it [00:02, 218.16it/s]
532it [00:02, 227.18it/s]
555it [00:02, 209.73it/s]
580it [00:02, 214.87it/s]
604it [00:02, 220.69it/s]
627it [00:02, 215.04it/s]
652it [00:02, 224.13it/s]
679it [00:03, 234.47it/s]
703it [00:03, 230.69it/s]
727it [00:03, 229.48it/s]
752it [00:03, 232.90it/s]
776it [00:03, 232.55it/s]
800it [00:03, 231.65it/s]
827it [00:03, 241.18it/s]
852it [00:03, 234.54it/s]
876it [00:03, 233.25it/s]
900it [00:04, 221.39it/s]
923it [00:04, 220.88it/s]
947it [00:04, 226.03it/s]
970it [00:04, 227.17it/s]
993it [00:04, 212.96it/s]
1015it [00:04, 207.91it/s]
1040it [00:04, 218.75it/s]
1064it [00:04, 223.52it/s]
1092it [00:04, 238.21it/s]
1116it [00:04, 233.15it/s]
1141it [00:05, 236.30it/s]
1165it [00:05, 229.90it/s]
1189it [00:05, 225.56it/s]
1215it [00:05, 232.94it/s]
1239it [00:05, 226.96it/s]
1265it [00:05, 234.95it/s]
1289it [00:05, 225.10it/s]
1312it [00:05, 224.26it/s]
1335it [00:05, 221.07it/s]
1358it [00:06, 221.02it/s]
1381it [00:06, 222.41it/s]
1408it [00:06, 235.88it/s]
1434it [00:06, 241.06it/s]
1459it [00:06, 232.08it/s]
1483it [00:06, 228.29it/s]
1507it [00:06, 231.20it/s]
1531it [00:06, 225.83it/s]
1554it [00:06, 222.57it/s]
1579it [00:07, 227.97it/s]
1602it [00:07, 222.44it/s]
1626it [00:07, 226.54it/s]
1649it [00:07, 226.32it/s]
1679it [00:07, 247.68it/s]
1704it [00:07, 246.06it/s]
1730it [00:07, 249.00it/s]
1756it [00:07, 248.50it/s]
1781it [00:07, 239.16it/s]
1805it [00:07, 235.47it/s]
1829it [00:08, 228.01it/s]
1854it [00:08, 231.95it/s]
1878it [00:08, 226.93it/s]
1908it [00:08, 246.70it/s]
1933it [00:08, 225.95it/s]
1958it [00:08, 230.88it/s]
1982it [00:08, 232.99it/s]
2007it [00:08, 237.03it/s]
2031it [00:08, 227.88it/s]
2054it [00:09, 213.49it/s]
2081it [00:09, 227.85it/s]
2105it [00:09, 225.68it/s]
2130it [00:09, 230.71it/s]
2154it [00:09, 230.75it/s]
2178it [00:09, 229.36it/s]
2204it [00:09, 236.25it/s]
2228it [00:09, 226.77it/s]
2252it [00:09, 229.12it/s]
2277it [00:10, 233.31it/s]
2301it [00:10, 230.06it/s]
2325it [00:10, 231.09it/s]
2351it [00:10, 238.00it/s]
2377it [00:10, 243.65it/s]
2402it [00:10, 242.19it/s]
2428it [00:10, 247.30it/s]
2454it [00:10, 250.59it/s]
2481it [00:10, 253.50it/s]
2507it [00:10, 243.13it/s]
2534it [00:11, 250.46it/s]
2560it [00:11, 241.06it/s]
2588it [00:11, 246.98it/s]
2613it [00:11, 240.83it/s]
2641it [00:11, 251.25it/s]
2667it [00:11, 234.33it/s]
2691it [00:11, 226.08it/s]
2719it [00:11, 239.44it/s]
2745it [00:11, 244.64it/s]
2771it [00:12, 248.60it/s]
2797it [00:12, 248.59it/s]
2822it [00:12, 238.64it/s]
2847it [00:12, 231.12it/s]
2871it [00:12, 230.15it/s]
2895it [00:12, 231.39it/s]
2921it [00:12, 238.61it/s]
2945it [00:12, 227.73it/s]
2968it [00:12, 226.54it/s]
2991it [00:12, 224.86it/s]
3014it [00:13, 225.90it/s]
3039it [00:13, 231.17it/s]
3063it [00:13, 219.07it/s]
3086it [00:13, 215.14it/s]
3109it [00:13, 217.63it/s]
3138it [00:13, 233.02it/s]
3163it [00:13, 236.25it/s]
3191it [00:13, 246.85it/s]
3216it [00:13, 242.58it/s]
3242it [00:14, 243.82it/s]
3269it [00:14, 250.20it/s]
3295it [00:14, 252.99it/s]
3321it [00:14, 238.78it/s]
3346it [00:14, 240.98it/s]
3373it [00:14, 248.26it/s]
3398it [00:14, 248.48it/s]
3423it [00:14, 234.99it/s]
3450it [00:14, 244.18it/s]
3475it [00:15, 244.71it/s]
3500it [00:15, 232.03it/s]
3524it [00:15, 227.27it/s]
3549it [00:15, 230.83it/s]
3573it [00:15, 228.65it/s]
3596it [00:15, 227.76it/s]
3620it [00:15, 229.89it/s]
3644it [00:15, 227.09it/s]
3667it [00:15, 227.50it/s]
3692it [00:15, 229.76it/s]
3715it [00:16, 227.94it/s]
3740it [00:16, 230.88it/s]
3767it [00:16, 238.13it/s]
3791it [00:16, 222.65it/s]
3816it [00:16, 229.70it/s]
3840it [00:16, 215.48it/s]
3863it [00:16, 219.34it/s]
3889it [00:16, 230.23it/s]
3913it [00:16, 220.30it/s]
3938it [00:17, 225.73it/s]
3964it [00:17, 231.84it/s]
3988it [00:17, 227.97it/s]
4018it [00:17, 246.16it/s]
4043it [00:17, 221.17it/s]
4069it [00:17, 231.07it/s]
4093it [00:17, 221.12it/s]
4116it [00:17, 211.66it/s]
4142it [00:17, 224.56it/s]
4170it [00:18, 238.20it/s]
4195it [00:18, 237.63it/s]
4219it [00:18, 232.45it/s]
4246it [00:18, 241.94it/s]
4271it [00:18, 240.79it/s]
4297it [00:18, 243.85it/s]
4322it [00:18, 240.91it/s]
4347it [00:18, 233.76it/s]
4371it [00:18, 233.81it/s]
4395it [00:19, 233.97it/s]
4419it [00:19, 231.65it/s]
4443it [00:19, 227.75it/s]
4466it [00:19, 223.74it/s]
4489it [00:19, 224.43it/s]
4512it [00:19, 225.63it/s]
4538it [00:19, 232.45it/s]
4562it [00:19, 228.90it/s]
4585it [00:19, 223.28it/s]
4608it [00:19, 210.61it/s]
4633it [00:20, 220.63it/s]
4656it [00:20, 215.85it/s]
4678it [00:20, 213.15it/s]
4700it [00:20, 206.27it/s]
4728it [00:20, 226.75it/s]
4751it [00:20, 221.29it/s]
4774it [00:20, 217.33it/s]
4796it [00:20, 216.10it/s]
4818it [00:20, 216.25it/s]
4844it [00:21, 228.44it/s]
4870it [00:21, 235.46it/s]
4894it [00:21, 230.46it/s]
4918it [00:21, 229.04it/s]
4941it [00:21, 224.16it/s]
4964it [00:21, 220.59it/s]
4987it [00:21, 216.46it/s]
5009it [00:21, 217.27it/s]
5035it [00:21, 229.27it/s]
5064it [00:22, 245.19it/s]
5089it [00:22, 245.80it/s]
5114it [00:22, 241.32it/s]
5139it [00:22, 233.07it/s]
5164it [00:22, 236.40it/s]
5188it [00:22, 229.56it/s]
5212it [00:22, 229.73it/s]
5236it [00:22, 230.01it/s]
5260it [00:22, 228.77it/s]
5286it [00:22, 233.69it/s]
5313it [00:23, 242.76it/s]
5344it [00:23, 259.41it/s]
5370it [00:23, 244.04it/s]
5395it [00:23, 240.42it/s]
5420it [00:23, 227.13it/s]
5443it [00:23, 227.59it/s]
5466it [00:23, 222.19it/s]
5491it [00:23, 229.47it/s]
5516it [00:23, 234.57it/s]
5540it [00:24, 222.94it/s]
5565it [00:24, 228.83it/s]
5589it [00:24, 231.92it/s]
5613it [00:24, 226.77it/s]
5636it [00:24, 223.15it/s]
5661it [00:24, 230.51it/s]
5685it [00:24, 218.16it/s]
5709it [00:24, 223.41it/s]
5735it [00:24, 231.63it/s]
5759it [00:25, 227.83it/s]
5784it [00:25, 233.48it/s]
5808it [00:25, 231.80it/s]
5833it [00:25, 236.94it/s]
5860it [00:25, 245.23it/s]
5885it [00:25, 243.43it/s]
5910it [00:25, 236.44it/s]
5934it [00:25, 229.43it/s]
5959it [00:25, 234.06it/s]
5983it [00:25, 234.58it/s]
6007it [00:26, 227.88it/s]
6030it [00:26, 226.59it/s]
6053it [00:26, 225.16it/s]
6076it [00:26, 223.29it/s]
6099it [00:26, 221.12it/s]
6122it [00:26, 216.77it/s]
6149it [00:26, 230.35it/s]
6173it [00:26, 230.42it/s]
6199it [00:26, 236.08it/s]
6223it [00:27, 213.00it/s]
6248it [00:27, 223.03it/s]
6272it [00:27, 225.19it/s]
6300it [00:27, 237.48it/s]
6326it [00:27, 233.26it/s]
6351it [00:27, 237.52it/s]
6376it [00:27, 240.61it/s]
6401it [00:27, 218.85it/s]
6426it [00:27, 224.80it/s]
6450it [00:28, 228.71it/s]
6474it [00:28, 229.07it/s]
6498it [00:28, 231.56it/s]
6522it [00:28, 226.97it/s]
6547it [00:28, 233.45it/s]
6571it [00:28, 233.63it/s]
6595it [00:28, 222.05it/s]
6618it [00:28, 209.43it/s]
6643it [00:28, 216.61it/s]
6665it [00:28, 216.98it/s]
6691it [00:29, 228.25it/s]
6714it [00:29, 224.03it/s]
6740it [00:29, 233.96it/s]
6764it [00:29, 231.86it/s]
6788it [00:29, 232.86it/s]
6818it [00:29, 251.84it/s]
6844it [00:29, 239.84it/s]
6869it [00:29, 233.63it/s]
6893it [00:29, 231.91it/s]
6918it [00:30, 235.26it/s]
6942it [00:30, 212.03it/s]
6965it [00:30, 214.23it/s]
6987it [00:30, 208.51it/s]
7012it [00:30, 219.11it/s]
7037it [00:30, 226.25it/s]
7061it [00:30, 229.58it/s]
7085it [00:30, 219.84it/s]
7108it [00:30, 219.62it/s]
7131it [00:31, 218.41it/s]
7155it [00:31, 224.01it/s]
7184it [00:31, 242.99it/s]
7210it [00:31, 246.19it/s]
7235it [00:31, 244.96it/s]
7260it [00:31, 241.72it/s]
7286it [00:31, 245.05it/s]
7311it [00:31, 232.29it/s]
7335it [00:31, 223.00it/s]
7358it [00:32, 221.02it/s]
7382it [00:32, 225.84it/s]
7405it [00:32, 226.02it/s]
7431it [00:32, 235.51it/s]
7455it [00:32, 227.47it/s]
7478it [00:32, 224.46it/s]
7501it [00:32, 225.06it/s]
7524it [00:32, 219.62it/s]
7550it [00:32, 228.86it/s]
7573it [00:32, 227.81it/s]
7597it [00:33, 229.14it/s]
7624it [00:33, 237.83it/s]
7651it [00:33, 245.23it/s]
7676it [00:33, 232.39it/s]
7702it [00:33, 238.14it/s]
7726it [00:33, 229.55it/s]
7750it [00:33, 228.82it/s]
7773it [00:33, 218.08it/s]
7796it [00:33, 221.22it/s]
7819it [00:34, 217.57it/s]
7847it [00:34, 233.96it/s]
7871it [00:34, 233.01it/s]
7895it [00:34, 226.59it/s]
7918it [00:34, 213.47it/s]
7944it [00:34, 221.70it/s]
7969it [00:34, 228.89it/s]
7994it [00:34, 233.42it/s]
8020it [00:34, 240.69it/s]
8045it [00:34, 236.83it/s]
8069it [00:35, 231.43it/s]
8093it [00:35, 230.41it/s]
8121it [00:35, 243.90it/s]
8149it [00:35, 252.81it/s]
8175it [00:35, 246.46it/s]
8200it [00:35, 246.83it/s]
8225it [00:35, 246.48it/s]
8250it [00:35, 236.96it/s]
8274it [00:35, 231.62it/s]
8299it [00:36, 233.68it/s]
8323it [00:36, 224.36it/s]
8350it [00:36, 236.70it/s]
8376it [00:36, 241.20it/s]
8401it [00:36, 238.58it/s]
8425it [00:36, 238.61it/s]
8449it [00:36, 223.36it/s]
8476it [00:36, 235.79it/s]
8500it [00:36, 233.72it/s]
8526it [00:37, 239.98it/s]
8551it [00:37, 236.00it/s]
8577it [00:37, 241.93it/s]
8603it [00:37, 244.14it/s]
8630it [00:37, 250.43it/s]
8656it [00:37, 247.40it/s]
8681it [00:37, 237.89it/s]
8705it [00:37, 228.03it/s]
8730it [00:37, 229.93it/s]
8754it [00:38, 223.25it/s]
8779it [00:38, 229.45it/s]
8806it [00:38, 239.40it/s]
8831it [00:38, 237.62it/s]
8855it [00:38, 225.84it/s]
8878it [00:38, 226.04it/s]
8901it [00:38, 219.36it/s]
8927it [00:38, 229.63it/s]
8951it [00:38, 215.92it/s]
8973it [00:38, 211.25it/s]
9000it [00:39, 225.62it/s]
9026it [00:39, 233.04it/s]
9050it [00:39, 230.25it/s]
9074it [00:39, 217.10it/s]
9096it [00:39, 217.88it/s]
9119it [00:39, 220.68it/s]
9142it [00:39, 212.06it/s]
9167it [00:39, 221.31it/s]
9193it [00:39, 230.74it/s]
9218it [00:40, 232.69it/s]
9245it [00:40, 242.97it/s]
9270it [00:40, 234.74it/s]
9294it [00:40, 235.00it/s]
9322it [00:40, 244.96it/s]
9347it [00:40, 231.98it/s]
9372it [00:40, 235.75it/s]
9399it [00:40, 244.16it/s]
9428it [00:40, 255.74it/s]
9454it [00:41, 246.11it/s]
9479it [00:41, 240.27it/s]
9504it [00:41, 231.67it/s]
9528it [00:41, 228.44it/s]
9551it [00:41, 226.25it/s]
9574it [00:41, 225.03it/s]
9599it [00:41, 231.32it/s]
9623it [00:41, 233.18it/s]
9648it [00:41, 235.85it/s]
9672it [00:41, 232.22it/s]
9696it [00:42, 227.62it/s]
9719it [00:42, 226.28it/s]
9742it [00:42, 225.34it/s]
9769it [00:42, 237.91it/s]
9793it [00:42, 229.99it/s]
9817it [00:42, 226.20it/s]
9841it [00:42, 228.19it/s]
9864it [00:42, 228.57it/s]
9887it [00:42, 222.11it/s]
9910it [00:43, 215.20it/s]
9932it [00:43, 216.42it/s]
9954it [00:43, 213.47it/s]
9976it [00:43, 214.72it/s]
10002it [00:43, 226.41it/s]
10025it [00:43, 224.65it/s]
10051it [00:43, 231.77it/s]
10075it [00:43, 229.12it/s]
10101it [00:43, 237.93it/s]
10131it [00:43, 255.16it/s]
10157it [00:44, 245.16it/s]
10182it [00:44, 244.94it/s]
10207it [00:44, 235.91it/s]
10231it [00:44, 231.77it/s]
10255it [00:44, 227.89it/s]
10278it [00:44, 222.67it/s]
10307it [00:44, 241.56it/s]
10332it [00:44, 225.40it/s]
10356it [00:44, 228.53it/s]
10380it [00:45, 231.03it/s]
10405it [00:45, 235.54it/s]
10429it [00:45, 235.87it/s]
10458it [00:45, 246.47it/s]
10483it [00:45, 246.04it/s]
10508it [00:45, 232.27it/s]
10535it [00:45, 239.47it/s]
10561it [00:45, 243.36it/s]
10586it [00:45, 239.23it/s]
10611it [00:46, 238.37it/s]
10636it [00:46, 240.76it/s]
10661it [00:46, 232.16it/s]
10687it [00:46, 237.46it/s]
10711it [00:46, 233.18it/s]
10735it [00:46, 227.37it/s]
10758it [00:46, 226.65it/s]
10781it [00:46, 225.71it/s]
10807it [00:46, 233.71it/s]
10831it [00:46, 229.74it/s]
10855it [00:47, 229.05it/s]
10882it [00:47, 239.12it/s]
10906it [00:47, 223.00it/s]
10929it [00:47, 223.73it/s]
10954it [00:47, 227.17it/s]
10977it [00:47, 217.08it/s]
11000it [00:47, 219.44it/s]
11023it [00:47, 216.23it/s]
11046it [00:47, 219.88it/s]
11072it [00:48, 229.54it/s]
11096it [00:48, 207.15it/s]
11125it [00:48, 229.08it/s]
11149it [00:48, 218.80it/s]
11175it [00:48, 228.58it/s]
11199it [00:48, 216.10it/s]
11222it [00:48, 216.63it/s]
11246it [00:48, 222.71it/s]
11269it [00:48, 219.41it/s]
11296it [00:49, 231.81it/s]
11320it [00:49, 233.14it/s]
11346it [00:49, 238.41it/s]
11370it [00:49, 231.75it/s]
11396it [00:49, 236.51it/s]
11422it [00:49, 241.53it/s]
11447it [00:49, 243.21it/s]
11473it [00:49, 246.91it/s]
11498it [00:49, 236.02it/s]
11522it [00:50, 232.92it/s]
11546it [00:50, 228.39it/s]
11571it [00:50, 231.76it/s]
11596it [00:50, 236.04it/s]
11620it [00:50, 221.60it/s]
11643it [00:50, 221.36it/s]
11668it [00:50, 227.50it/s]
11692it [00:50, 231.01it/s]
11716it [00:50, 226.87it/s]
11740it [00:50, 229.16it/s]
11763it [00:51, 214.82it/s]
11787it [00:51, 220.29it/s]
11810it [00:51, 219.25it/s]
11834it [00:51, 221.12it/s]
11857it [00:51, 220.35it/s]
11883it [00:51, 229.52it/s]
11911it [00:51, 241.33it/s]
11936it [00:51, 237.24it/s]
11960it [00:51, 237.04it/s]
11986it [00:52, 240.10it/s]
12011it [00:52, 230.05it/s]
12035it [00:52, 213.96it/s]
12057it [00:52, 210.17it/s]
12082it [00:52, 218.10it/s]
12108it [00:52, 228.78it/s]
12132it [00:52, 220.48it/s]
12155it [00:52, 220.17it/s]
12178it [00:52, 219.34it/s]
12201it [00:53, 205.04it/s]
12223it [00:53, 208.54it/s]
12248it [00:53, 218.21it/s]
12271it [00:53, 218.36it/s]
12295it [00:53, 222.98it/s]
12318it [00:53, 212.09it/s]
12340it [00:53, 211.91it/s]
12365it [00:53, 218.75it/s]
12387it [00:53, 217.88it/s]
12410it [00:54, 219.31it/s]
12433it [00:54, 221.71it/s]
12456it [00:54, 220.06it/s]
12479it [00:54, 210.46it/s]
12503it [00:54, 216.62it/s]
12528it [00:54, 224.60it/s]
12551it [00:54, 224.92it/s]
12577it [00:54, 234.24it/s]
12601it [00:54, 230.85it/s]
12626it [00:54, 235.25it/s]
12653it [00:55, 243.67it/s]
12678it [00:55, 230.38it/s]
12703it [00:55, 235.51it/s]
12728it [00:55, 238.20it/s]
12752it [00:55, 230.76it/s]
12776it [00:55, 227.34it/s]
12799it [00:55, 225.63it/s]
12822it [00:55, 225.55it/s]
12849it [00:55, 232.94it/s]
12873it [00:56, 231.15it/s]
12898it [00:56, 233.35it/s]
12922it [00:56, 231.98it/s]
12948it [00:56, 237.13it/s]
12972it [00:56, 236.88it/s]
12996it [00:56, 228.39it/s]
13019it [00:56, 223.29it/s]
13042it [00:56, 218.14it/s]
13066it [00:56, 221.32it/s]
13093it [00:56, 233.01it/s]
13117it [00:57, 226.13it/s]
13144it [00:57, 236.35it/s]
13168it [00:57, 235.80it/s]
13192it [00:57, 228.43it/s]
13216it [00:57, 230.13it/s]
13240it [00:57, 227.70it/s]
13263it [00:57, 224.29it/s]
13286it [00:57, 217.59it/s]
13310it [00:57, 221.91it/s]
13339it [00:58, 240.46it/s]
13367it [00:58, 247.31it/s]
13392it [00:58, 246.64it/s]
13417it [00:58, 236.89it/s]
13441it [00:58, 234.89it/s]
13466it [00:58, 236.82it/s]
13490it [00:58, 229.57it/s]
13517it [00:58, 240.21it/s]
13542it [00:58, 217.68it/s]
13566it [00:59, 223.46it/s]
13589it [00:59, 216.34it/s]
13611it [00:59, 215.86it/s]
13637it [00:59, 226.05it/s]
13662it [00:59, 231.48it/s]
13686it [00:59, 233.67it/s]
13710it [00:59, 234.10it/s]
13734it [00:59, 228.52it/s]
13759it [00:59, 233.82it/s]
13784it [00:59, 237.66it/s]
13809it [01:00, 240.31it/s]
13834it [01:00, 242.82it/s]
13859it [01:00, 237.19it/s]
13883it [01:00, 235.66it/s]
13907it [01:00, 222.45it/s]
13930it [01:00, 216.45it/s]
13954it [01:00, 221.79it/s]
13980it [01:00, 232.18it/s]
14004it [01:00, 231.97it/s]
14032it [01:01, 243.20it/s]
14057it [01:01, 244.17it/s]
14084it [01:01, 249.33it/s]
14111it [01:01, 252.14it/s]
14137it [01:01, 243.14it/s]
14162it [01:01, 234.42it/s]
14188it [01:01, 241.24it/s]
14213it [01:01, 232.27it/s]
14238it [01:01, 236.66it/s]
14264it [01:02, 236.79it/s]
14291it [01:02, 245.93it/s]
14318it [01:02, 249.87it/s]
14344it [01:02, 247.88it/s]
14369it [01:02, 233.43it/s]
14393it [01:02, 228.19it/s]
14417it [01:02, 227.66it/s]
14440it [01:02, 220.99it/s]
14463it [01:02, 218.40it/s]
14487it [01:02, 221.54it/s]
14510it [01:03, 221.56it/s]
14538it [01:03, 236.50it/s]
14562it [01:03, 229.52it/s]
14586it [01:03, 223.34it/s]
14609it [01:03, 215.20it/s]
14637it [01:03, 229.98it/s]
14664it [01:03, 232.72it/s]
14688it [01:03, 234.26it/s]
14713it [01:03, 236.39it/s]
14737it [01:04, 228.97it/s]
14764it [01:04, 240.20it/s]
14791it [01:04, 246.84it/s]
14816it [01:04, 240.65it/s]
14841it [01:04, 237.05it/s]
14865it [01:04, 217.97it/s]
14890it [01:04, 223.41it/s]
14913it [01:04, 220.32it/s]
14936it [01:04, 221.60it/s]
14959it [01:05, 207.29it/s]
14984it [01:05, 217.91it/s]
15011it [01:05, 231.85it/s]
15035it [01:05, 227.61it/s]
15058it [01:05, 226.27it/s]
15084it [01:05, 235.88it/s]
15108it [01:05, 214.91it/s]
15131it [01:05, 218.20it/s]
15157it [01:05, 228.45it/s]
15181it [01:06, 227.15it/s]
15208it [01:06, 236.89it/s]
15233it [01:06, 237.64it/s]
15260it [01:06, 246.51it/s]
15285it [01:06, 232.71it/s]
15309it [01:06, 231.13it/s]
15333it [01:06, 223.07it/s]
15359it [01:06, 232.28it/s]
15383it [01:06, 224.31it/s]
15406it [01:07, 214.77it/s]
15433it [01:07, 227.74it/s]
15456it [01:07, 228.08it/s]
15482it [01:07, 235.96it/s]
15506it [01:07, 220.43it/s]
15529it [01:07, 219.73it/s]
15555it [01:07, 229.07it/s]
15579it [01:07, 223.66it/s]
15603it [01:07, 226.84it/s]
15626it [01:07, 226.35it/s]
15649it [01:08, 217.76it/s]
15674it [01:08, 224.13it/s]
15697it [01:08, 217.59it/s]
15723it [01:08, 228.12it/s]
15746it [01:08, 225.32it/s]
15769it [01:08, 218.81it/s]
15794it [01:08, 224.83it/s]
15817it [01:08, 226.05it/s]
15841it [01:08, 226.51it/s]
15864it [01:09, 222.04it/s]
15887it [01:09, 214.42it/s]
15910it [01:09, 218.74it/s]
15932it [01:09, 215.59it/s]
15955it [01:09, 218.32it/s]
15977it [01:09, 211.29it/s]
16000it [01:09, 214.12it/s]
16023it [01:09, 213.14it/s]
16047it [01:09, 219.80it/s]
16070it [01:10, 215.06it/s]
16095it [01:10, 223.41it/s]
16122it [01:10, 235.75it/s]
16147it [01:10, 239.11it/s]
16171it [01:10, 230.89it/s]
16195it [01:10, 221.93it/s]
16218it [01:10, 216.40it/s]
16240it [01:10, 216.10it/s]
16262it [01:10, 209.06it/s]
16286it [01:10, 216.66it/s]
16309it [01:11, 217.06it/s]
16336it [01:11, 230.52it/s]
16361it [01:11, 235.20it/s]
16386it [01:11, 231.43it/s]
16410it [01:11, 227.19it/s]
16435it [01:11, 230.85it/s]
16459it [01:11, 226.83it/s]
16487it [01:11, 240.38it/s]
16512it [01:11, 230.78it/s]
16537it [01:12, 235.94it/s]
16562it [01:12, 236.61it/s]
16588it [01:12, 240.77it/s]
16613it [01:12, 232.93it/s]
16637it [01:12, 211.34it/s]
16661it [01:12, 218.97it/s]
16687it [01:12, 225.34it/s]
16710it [01:12, 225.60it/s]
16733it [01:12, 218.19it/s]
16759it [01:13, 227.45it/s]
16784it [01:13, 232.48it/s]
16809it [01:13, 235.02it/s]
16833it [01:13, 235.82it/s]
16862it [01:13, 250.07it/s]
16888it [01:13, 245.54it/s]
16913it [01:13, 229.45it/s]
16938it [01:13, 234.99it/s]
16962it [01:13, 231.13it/s]
16986it [01:14, 222.76it/s]
17009it [01:14, 223.48it/s]
17036it [01:14, 233.79it/s]
17060it [01:14, 200.07it/s]
17084it [01:14, 206.06it/s]
17112it [01:14, 223.84it/s]
17138it [01:14, 232.72it/s]
17162it [01:14, 217.78it/s]
17187it [01:14, 225.00it/s]
17211it [01:15, 227.42it/s]
17235it [01:15, 230.96it/s]
17260it [01:15, 236.02it/s]
17284it [01:15, 230.29it/s]
17309it [01:15, 235.18it/s]
17336it [01:15, 244.28it/s]
17361it [01:15, 245.27it/s]
17387it [01:15, 248.50it/s]
17412it [01:15, 238.88it/s]
17436it [01:15, 236.22it/s]
17460it [01:16, 225.07it/s]
17483it [01:16, 226.20it/s]
17509it [01:16, 234.01it/s]
17533it [01:16, 229.99it/s]
17557it [01:16, 226.14it/s]
17584it [01:16, 237.57it/s]
17611it [01:16, 245.95it/s]
17636it [01:16, 232.03it/s]
17663it [01:16, 239.72it/s]
17689it [01:17, 242.96it/s]
17715it [01:17, 245.85it/s]
17740it [01:17, 238.12it/s]
17764it [01:17, 234.11it/s]
17788it [01:17, 233.29it/s]
17814it [01:17, 240.35it/s]
17840it [01:17, 243.79it/s]
17867it [01:17, 248.95it/s]
17892it [01:17, 245.14it/s]
17917it [01:17, 241.26it/s]
17937it [01:18, 229.77it/s]
/opt/hostedtoolcache/Python/3.12.9/x64/lib/python3.12/site-packages/AFQ/tasks/segmentation.py:61: UserWarning:
Pass ['to_space'] as keyword args. From version 2.0.0 passing these as positional arguments will result in an error.
/opt/hostedtoolcache/Python/3.12.9/x64/lib/python3.12/site-packages/AFQ/recognition/utils.py:97: UserWarning:
Streamlines do not have the same number of points. All streamlines need to have the same number of points. Use dipy.tracking.streamline.set_number_of_points to adjust your streamlines
0%| | 0/16 [00:00<?, ?it/s]
31%|███▏ | 5/16 [00:00<00:00, 43.86it/s]
62%|██████▎ | 10/16 [00:00<00:00, 44.53it/s]
94%|█████████▍| 15/16 [00:00<00:00, 45.40it/s]
100%|██████████| 16/16 [00:00<00:00, 45.17it/s]
0%| | 0/16 [00:00<?, ?it/s]
31%|███▏ | 5/16 [00:00<00:00, 45.95it/s]
62%|██████▎ | 10/16 [00:00<00:00, 45.63it/s]
94%|█████████▍| 15/16 [00:00<00:00, 46.06it/s]
100%|██████████| 16/16 [00:00<00:00, 46.02it/s]
/opt/hostedtoolcache/Python/3.12.9/x64/lib/python3.12/site-packages/AFQ/utils/streamlines.py:93: UserWarning:
Pass ['to_space'] as keyword args. From version 2.0.0 passing these as positional arguments will result in an error.
/opt/hostedtoolcache/Python/3.12.9/x64/lib/python3.12/site-packages/AFQ/utils/streamlines.py:93: UserWarning:
Pass ['to_space'] as keyword args. From version 2.0.0 passing these as positional arguments will result in an error.
/opt/hostedtoolcache/Python/3.12.9/x64/lib/python3.12/site-packages/AFQ/utils/streamlines.py:93: UserWarning:
Pass ['to_space'] as keyword args. From version 2.0.0 passing these as positional arguments will result in an error.
References:#
- Garyfallidis2017
Garyfallidis, Eleftherios, Marc-Alexandre Côté, Francois Rheault, Jasmeen Sidhu, Janice Hau, Laurent Petit, David Fortin, Stephen Cunanne, and Maxime Descoteaux. 2017.“Recognition of White Matter Bundles Using Local and Global Streamline-Based Registration and Clustering.”NeuroImage 170: 283-295.
Total running time of the script: (12 minutes 14.370 seconds)
Estimated memory usage: 2738 MB