Note
Go to the end to download the full example code.
How to use Free water DTI#
The free-water DTI model [1, 2]_ fits a two compartment model to dMRI data with more than one non-zero shell. One compartment is a spherical compartment with the diffusivity of water, which accounts for free water in the tissue. The other compartment is the standard diffusion tensor.
In this example, we will compare the results of the fwDTI model and the standard DTI model.
import os.path as op
import matplotlib.pyplot as plt
import nibabel as nib
from AFQ.api.group import GroupAFQ
import AFQ.data.fetch as afd
from AFQ.definitions.image import ImageFile, RoiImage
import AFQ.api.bundle_dict as abd
import pandas as pd
Get some data#
In this example, we will look at one subject from the Healthy Brain Network Processed Open Diffusion Derivatives dataset (HBN-POD2) [3, 4]_. The data in this study were collected with a multi-shell sequence, meaning that most subjects in this study have data with more than one non-zero b-value. This means that we can fit the fwDTI model to their data.
We’ll use a fetcher to get preprocessd dMRI data for one of the >2,000 subjects in that study. The data gets organized into a BIDS-compatible format in the ~/AFQ_data/HBN folder.
study_dir = afd.fetch_hbn_preproc(["NDARAA948VFH"])[1]
Define an AFQ object#
In addition to preprocessd dMRI data, HBN-POD2 contains brain mask and mapping information for each subject. We can use this information in our pipeline, by inserting this information as mapping_definition and brain_mask_definition inputs to the GroupAFQ class initializer. When initializing this object, we will also ask for the fwDTI scalars to be computed. For expedience, we will limit our investigation to the bilateral arcuate fasciculus and track only around that bundle. If you would like to do this for all bundles, you would remove the bundle_dict and tracking_params inputs to the initializer that are provided below.
brain_mask_definition = ImageFile(
suffix="mask",
filters={'desc': 'brain',
'space': 'T1w',
'scope': 'qsiprep'})
bundle_names = ["Left Arcuate", "Right Arcuate"]
bundle_dict = abd.default18_bd()[bundle_names]
myafq = GroupAFQ(
bids_path=study_dir,
preproc_pipeline='qsiprep',
output_dir=op.join(study_dir, "derivatives", "afq_fwdti"),
bundle_info=bundle_dict,
tracking_params={
"n_seeds": 50000,
"random_seeds": True,
"seed_mask": RoiImage(use_waypoints=True, use_endpoints=True),
},
brain_mask_definition=brain_mask_definition,
scalars=["fwdti_fa", "fwdti_md", "fwdti_fwf", "dti_fa", "dti_md"])
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 5468.45 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 6626.07 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 5890.88 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 6168.09 MB/s]
0%| | 0/29 [00:00<?, ? MB/s]
14%|█▍ | 4/29 [00:00<00:01, 23.19 MB/s]
79%|███████▉ | 23/29 [00:00<00:00, 74.13 MB/s]
100%|██████████| 29/29 [00:00<00:00, 83.71 MB/s]
0%| | 0/28 [00:00<?, ? MB/s]
18%|█▊ | 5/28 [00:00<00:00, 28.69 MB/s]
86%|████████▌ | 24/28 [00:00<00:00, 75.87 MB/s]
100%|██████████| 28/28 [00:00<00:00, 80.15 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 5991.86 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 5753.50 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 5343.06 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 5907.47 MB/s]
0%| | 0/23 [00:00<?, ? MB/s]
22%|██▏ | 5/23 [00:00<00:00, 28.87 MB/s]
100%|██████████| 23/23 [00:00<00:00, 88.06 MB/s]
0%| | 0/22 [00:00<?, ? MB/s]
23%|██▎ | 5/22 [00:00<00:00, 28.78 MB/s]
100%|██████████| 22/22 [00:00<00:00, 83.81 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 4899.89 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 3872.86 MB/s]
0%| | 0/16 [00:00<?, ? MB/s]
31%|███▏ | 5/16 [00:00<00:00, 28.96 MB/s]
100%|██████████| 16/16 [00:00<00:00, 61.56 MB/s]
0%| | 0/16 [00:00<?, ? MB/s]
25%|██▌ | 4/16 [00:00<00:00, 22.93 MB/s]
100%|██████████| 16/16 [00:00<00:00, 60.77 MB/s]
0%| | 0/24 [00:00<?, ? MB/s]
21%|██ | 5/24 [00:00<00:00, 28.87 MB/s]
83%|████████▎ | 20/24 [00:00<00:00, 62.63 MB/s]
100%|██████████| 24/24 [00:00<00:00, 68.97 MB/s]
0%| | 0/24 [00:00<?, ? MB/s]
21%|██ | 5/24 [00:00<00:00, 28.93 MB/s]
100%|██████████| 24/24 [00:00<00:00, 76.09 MB/s]
100%|██████████| 24/24 [00:00<00:00, 69.02 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 5907.47 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 5482.75 MB/s]
0%| | 0/28 [00:00<?, ? MB/s]
18%|█▊ | 5/28 [00:00<00:00, 28.91 MB/s]
79%|███████▊ | 22/28 [00:00<00:00, 69.65 MB/s]
100%|██████████| 28/28 [00:00<00:00, 80.70 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 6069.90 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 4438.42 MB/s]
0%| | 0/25 [00:00<?, ? MB/s]
16%|█▌ | 4/25 [00:00<00:00, 22.94 MB/s]
92%|█████████▏| 23/25 [00:00<00:00, 73.28 MB/s]
100%|██████████| 25/25 [00:00<00:00, 71.38 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 5203.85 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 6114.15 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 3666.35 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 3949.44 MB/s]
0%| | 0/21 [00:00<?, ? MB/s]
24%|██▍ | 5/21 [00:00<00:00, 28.61 MB/s]
100%|██████████| 21/21 [00:00<00:00, 79.71 MB/s]
0%| | 0/21 [00:00<?, ? MB/s]
24%|██▍ | 5/21 [00:00<00:00, 28.83 MB/s]
100%|██████████| 21/21 [00:00<00:00, 80.36 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 3515.76 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 4100.00 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 4505.16 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 3738.24 MB/s]
0%| | 0/29 [00:00<?, ? MB/s]
17%|█▋ | 5/29 [00:00<00:00, 28.80 MB/s]
69%|██████▉ | 20/29 [00:00<00:00, 62.56 MB/s]
100%|██████████| 29/29 [00:00<00:00, 83.18 MB/s]
0%| | 0/29 [00:00<?, ? MB/s]
17%|█▋ | 5/29 [00:00<00:00, 28.95 MB/s]
83%|████████▎ | 24/29 [00:00<00:00, 76.43 MB/s]
100%|██████████| 29/29 [00:00<00:00, 83.59 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 4219.62 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 5548.02 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 5384.22 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 5349.88 MB/s]
0%| | 0/28 [00:00<?, ? MB/s]
18%|█▊ | 5/28 [00:00<00:00, 28.79 MB/s]
79%|███████▊ | 22/28 [00:00<00:00, 69.33 MB/s]
100%|██████████| 28/28 [00:00<00:00, 80.36 MB/s]
0%| | 0/27 [00:00<?, ? MB/s]
19%|█▊ | 5/27 [00:00<00:00, 28.75 MB/s]
81%|████████▏ | 22/27 [00:00<00:00, 69.23 MB/s]
100%|██████████| 27/27 [00:00<00:00, 77.39 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 5041.23 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 5289.16 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 6423.13 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 5540.69 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 4975.45 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 6087.52 MB/s]
0%| | 0/32 [00:00<?, ? MB/s]
16%|█▌ | 5/32 [00:00<00:00, 28.88 MB/s]
62%|██████▎ | 20/32 [00:00<00:00, 62.66 MB/s]
100%|██████████| 32/32 [00:00<00:00, 91.83 MB/s]
0%| | 0/30 [00:00<?, ? MB/s]
17%|█▋ | 5/30 [00:00<00:00, 28.71 MB/s]
67%|██████▋ | 20/30 [00:00<00:00, 62.25 MB/s]
100%|██████████| 30/30 [00:00<00:00, 85.60 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 5363.56 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 5489.93 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 6594.82 MB/s]
0%| | 0/1 [00:00<?, ? MB/s]
100%|██████████| 1/1 [00:00<00:00, 6114.15 MB/s]
0%| | 0/23 [00:00<?, ? MB/s]
17%|█▋ | 4/23 [00:00<00:00, 23.17 MB/s]
100%|██████████| 23/23 [00:00<00:00, 88.23 MB/s]
0%| | 0/22 [00:00<?, ? MB/s]
23%|██▎ | 5/22 [00:00<00:00, 28.77 MB/s]
100%|██████████| 22/22 [00:00<00:00, 83.93 MB/s]
0%| | 0/26 [00:00<?, ? MB/s]
15%|█▌ | 4/26 [00:00<00:00, 23.04 MB/s]
88%|████████▊ | 23/26 [00:00<00:00, 73.69 MB/s]
100%|██████████| 26/26 [00:00<00:00, 74.64 MB/s]
0%| | 0/23 [00:00<?, ? MB/s]
22%|██▏ | 5/23 [00:00<00:00, 28.81 MB/s]
100%|██████████| 23/23 [00:00<00:00, 87.75 MB/s]
0%| | 0/17 [00:00<?, ? MB/s]
29%|██▉ | 5/17 [00:00<00:00, 28.85 MB/s]
100%|██████████| 17/17 [00:00<00:00, 65.20 MB/s]
0%| | 0/16 [00:00<?, ? MB/s]
31%|███▏ | 5/16 [00:00<00:00, 28.97 MB/s]
100%|██████████| 16/16 [00:00<00:00, 61.63 MB/s]
0%| | 0/17 [00:00<?, ? MB/s]
29%|██▉ | 5/17 [00:00<00:00, 28.92 MB/s]
100%|██████████| 17/17 [00:00<00:00, 65.25 MB/s]
0%| | 0/17 [00:00<?, ? MB/s]
29%|██▉ | 5/17 [00:00<00:00, 29.00 MB/s]
100%|██████████| 17/17 [00:00<00:00, 65.47 MB/s]
0%| | 0/17 [00:00<?, ? MB/s]
29%|██▉ | 5/17 [00:00<00:00, 28.91 MB/s]
100%|██████████| 17/17 [00:00<00:00, 65.31 MB/s]
0%| | 0/17 [00:00<?, ? MB/s]
29%|██▉ | 5/17 [00:00<00:00, 28.84 MB/s]
100%|██████████| 17/17 [00:00<00:00, 64.80 MB/s]
0%| | 0/18 [00:00<?, ? MB/s]
28%|██▊ | 5/18 [00:00<00:00, 28.68 MB/s]
100%|██████████| 18/18 [00:00<00:00, 68.54 MB/s]
0%| | 0/20 [00:00<?, ? MB/s]
25%|██▌ | 5/20 [00:00<00:00, 28.89 MB/s]
100%|██████████| 20/20 [00:00<00:00, 76.65 MB/s]
0%| | 0/18 [00:00<?, ? MB/s]
28%|██▊ | 5/18 [00:00<00:00, 29.06 MB/s]
100%|██████████| 18/18 [00:00<00:00, 69.48 MB/s]
0%| | 0/20 [00:00<?, ? MB/s]
25%|██▌ | 5/20 [00:00<00:00, 28.95 MB/s]
100%|██████████| 20/20 [00:00<00:00, 76.78 MB/s]
0%| | 0/16 [00:00<?, ? MB/s]
31%|███▏ | 5/16 [00:00<00:00, 28.74 MB/s]
100%|██████████| 16/16 [00:00<00:00, 61.05 MB/s]
0%| | 0/16 [00:00<?, ? MB/s]
31%|███▏ | 5/16 [00:00<00:00, 28.77 MB/s]
100%|██████████| 16/16 [00:00<00:00, 61.13 MB/s]
0%| | 0/16 [00:00<?, ? MB/s]
31%|███▏ | 5/16 [00:00<00:00, 28.92 MB/s]
100%|██████████| 16/16 [00:00<00:00, 61.22 MB/s]
0%| | 0/16 [00:00<?, ? MB/s]
31%|███▏ | 5/16 [00:00<00:00, 28.76 MB/s]
100%|██████████| 16/16 [00:00<00:00, 61.09 MB/s]
0%| | 0/17 [00:00<?, ? MB/s]
29%|██▉ | 5/17 [00:00<00:00, 28.85 MB/s]
100%|██████████| 17/17 [00:00<00:00, 65.17 MB/s]
0%| | 0/17 [00:00<?, ? MB/s]
29%|██▉ | 5/17 [00:00<00:00, 29.04 MB/s]
100%|██████████| 17/17 [00:00<00:00, 65.49 MB/s]
0%| | 0/17 [00:00<?, ? MB/s]
29%|██▉ | 5/17 [00:00<00:00, 28.50 MB/s]
100%|██████████| 17/17 [00:00<00:00, 64.30 MB/s]
0%| | 0/17 [00:00<?, ? MB/s]
29%|██▉ | 5/17 [00:00<00:00, 28.63 MB/s]
100%|██████████| 17/17 [00:00<00:00, 64.60 MB/s]
0%| | 0/16 [00:00<?, ? MB/s]
31%|███▏ | 5/16 [00:00<00:00, 28.93 MB/s]
100%|██████████| 16/16 [00:00<00:00, 61.53 MB/s]
0%| | 0/17 [00:00<?, ? MB/s]
29%|██▉ | 5/17 [00:00<00:00, 28.97 MB/s]
100%|██████████| 17/17 [00:00<00:00, 65.46 MB/s]
0%| | 0/16 [00:00<?, ? MB/s]
31%|███▏ | 5/16 [00:00<00:00, 29.11 MB/s]
100%|██████████| 16/16 [00:00<00:00, 61.88 MB/s]
0%| | 0/17 [00:00<?, ? MB/s]
24%|██▎ | 4/17 [00:00<00:00, 23.29 MB/s]
100%|██████████| 17/17 [00:00<00:00, 65.68 MB/s]
0%| | 0/18 [00:00<?, ? MB/s]
28%|██▊ | 5/18 [00:00<00:00, 28.92 MB/s]
100%|██████████| 18/18 [00:00<00:00, 69.14 MB/s]
0%| | 0/17 [00:00<?, ? MB/s]
29%|██▉ | 5/17 [00:00<00:00, 28.89 MB/s]
100%|██████████| 17/17 [00:00<00:00, 65.18 MB/s]
0%| | 0/18 [00:00<?, ? MB/s]
28%|██▊ | 5/18 [00:00<00:00, 29.04 MB/s]
100%|██████████| 18/18 [00:00<00:00, 69.39 MB/s]
0%| | 0/17 [00:00<?, ? MB/s]
29%|██▉ | 5/17 [00:00<00:00, 29.03 MB/s]
100%|██████████| 17/17 [00:00<00:00, 65.51 MB/s]
0%| | 0/20 [00:00<?, ? MB/s]
25%|██▌ | 5/20 [00:00<00:00, 28.98 MB/s]
100%|██████████| 20/20 [00:00<00:00, 76.95 MB/s]
0%| | 0/20 [00:00<?, ? MB/s]
25%|██▌ | 5/20 [00:00<00:00, 28.52 MB/s]
100%|██████████| 20/20 [00:00<00:00, 75.71 MB/s]
0%| | 0/17 [00:00<?, ? MB/s]
29%|██▉ | 5/17 [00:00<00:00, 29.02 MB/s]
100%|██████████| 17/17 [00:00<00:00, 65.51 MB/s]
0%| | 0/17 [00:00<?, ? MB/s]
29%|██▉ | 5/17 [00:00<00:00, 28.76 MB/s]
100%|██████████| 17/17 [00:00<00:00, 64.98 MB/s]
0%| | 0/17 [00:00<?, ? MB/s]
29%|██▉ | 5/17 [00:00<00:00, 28.96 MB/s]
100%|██████████| 17/17 [00:00<00:00, 65.30 MB/s]
0%| | 0/17 [00:00<?, ? MB/s]
29%|██▉ | 5/17 [00:00<00:00, 28.25 MB/s]
100%|██████████| 17/17 [00:00<00:00, 64.22 MB/s]
0%| | 0/17 [00:00<?, ? MB/s]
29%|██▉ | 5/17 [00:00<00:00, 28.82 MB/s]
100%|██████████| 17/17 [00:00<00:00, 65.03 MB/s]
0%| | 0/16 [00:00<?, ? MB/s]
31%|███▏ | 5/16 [00:00<00:00, 28.97 MB/s]
100%|██████████| 16/16 [00:00<00:00, 61.56 MB/s]
0%| | 0/17 [00:00<?, ? MB/s]
24%|██▎ | 4/17 [00:00<00:00, 22.91 MB/s]
100%|██████████| 17/17 [00:00<00:00, 64.63 MB/s]
0%| | 0/16 [00:00<?, ? MB/s]
31%|███▏ | 5/16 [00:00<00:00, 28.86 MB/s]
100%|██████████| 16/16 [00:00<00:00, 61.34 MB/s]
0%| | 0/16 [00:00<?, ? MB/s]
31%|███▏ | 5/16 [00:00<00:00, 28.79 MB/s]
100%|██████████| 16/16 [00:00<00:00, 61.13 MB/s]
0%| | 0/20 [00:00<?, ? MB/s]
20%|██ | 4/20 [00:00<00:00, 23.10 MB/s]
100%|██████████| 20/20 [00:00<00:00, 76.64 MB/s]
0%| | 0/16 [00:00<?, ? MB/s]
31%|███▏ | 5/16 [00:00<00:00, 28.70 MB/s]
100%|██████████| 16/16 [00:00<00:00, 61.16 MB/s]
0%| | 0/20 [00:00<?, ? MB/s]
25%|██▌ | 5/20 [00:00<00:00, 29.01 MB/s]
100%|██████████| 20/20 [00:00<00:00, 76.88 MB/s]
Compare fwDTI and DTI maps#
First, we take a look at the maps for the FA and MD calculated using the two models
fwFA = nib.load(myafq.export("fwdti_fa")["NDARAA948VFH"]).get_fdata()
FA = nib.load(myafq.export("dti_fa")["NDARAA948VFH"]).get_fdata()
fig, ax = plt.subplots(1, 2)
ax[0].matshow(FA[:, :, FA.shape[-1] // 2], cmap='gray')
ax[0].axis("off")
ax[1].matshow(fwFA[:, :, fwFA.shape[-1] // 2], cmap='gray')
ax[1].axis("off")
fwMD = nib.load(myafq.export("fwdti_md")["NDARAA948VFH"]).get_fdata()
MD = nib.load(myafq.export("dti_md")["NDARAA948VFH"]).get_fdata()
fig, ax = plt.subplots(1, 2)
ax[0].matshow(MD[:, :, MD.shape[-1] // 2], cmap='gray', vmax=0.005)
ax[0].axis("off")
ax[1].matshow(fwMD[:, :, fwMD.shape[-1] // 2], cmap='gray', vmax=0.005)
ax[1].axis("off")
/opt/hostedtoolcache/Python/3.12.9/x64/lib/python3.12/site-packages/AFQ/tasks/data.py:88: UserWarning:
Pass ['bvecs'] as keyword args. From version 2.0.0 passing these as positional arguments will result in an error.
/opt/hostedtoolcache/Python/3.12.9/x64/lib/python3.12/site-packages/dipy/reconst/fwdti.py:701: RuntimeWarning:
Number of calls to function has reached maxfev = 1800.
/opt/hostedtoolcache/Python/3.12.9/x64/lib/python3.12/site-packages/dipy/reconst/fwdti.py:501: RuntimeWarning:
overflow encountered in exp
(np.float64(-0.5), np.float64(128.5), np.float64(107.5), np.float64(-0.5))
Free-water fraction map#
In addition to the standard tensor scalars, provided by the fwDTI model, this model also computes a free-water fraction, which is a number between 0 and 1 that assesses the fraction of the voxel signal that is explained by the free water compartment.

(np.float64(-0.5), np.float64(128.5), np.float64(107.5), np.float64(-0.5))
Comparing bundle profiles#
Exporting the profiles will create a CSV file that contains information about node-by-node values of the scalars computed with both models. Here, we read in this information with Pandas and plot a comparison. As you can see, when free water is accounted for with the fwDTI model, FA along the bundle is higher and MD is lower than that estimated with the standard DTI model.
profiles_csv = myafq.export("profiles")['NDARAA948VFH']
profiles = pd.read_csv(profiles_csv)
fig, ax = plt.subplots(3, 2)
for ii, bundle in enumerate(["Left Arcuate", "Right Arcuate"]):
ax[0, ii].plot(profiles[profiles["tractID"] == bundle]["fwdti_fa"],
label="fwDTI")
ax[0, ii].plot(profiles[profiles["tractID"] == bundle]["dti_fa"],
label="DTI")
ax[0, ii].set_ylabel("FA")
ax[0, ii].legend()
ax[1, ii].plot(profiles[profiles["tractID"] == bundle]["fwdti_md"],
label="fwDTI")
ax[1, ii].plot(profiles[profiles["tractID"] == bundle]["dti_md"],
label="DTI")
ax[1, ii].set_ylabel("MD")
ax[1, ii].legend()
ax[2, ii].plot(profiles[profiles["tractID"] == bundle]["fwdti_fwf"])
ax[2, ii].set_ylabel("Free water fraction")
ax[2, ii].set_xlabel("Distance along the bundle (A => P)")

/opt/hostedtoolcache/Python/3.12.9/x64/lib/python3.12/site-packages/AFQ/models/csd.py:45: UserWarning:
Pass ['bvecs'] as keyword args. From version 2.0.0 passing these as positional arguments will result in an error.
Optimizing level 2 [max iter: 10000]
Optimizing level 1 [max iter: 1000]
Optimizing level 0 [max iter: 100]
Optimizing level 2 [max iter: 10000]
Optimizing level 1 [max iter: 1000]
Optimizing level 0 [max iter: 100]
Optimizing level 2 [max iter: 10000]
Optimizing level 1 [max iter: 1000]
Optimizing level 0 [max iter: 100]
0it [00:00, ?it/s]
21it [00:00, 202.53it/s]
42it [00:00, 201.54it/s]
63it [00:00, 191.60it/s]
83it [00:00, 188.49it/s]
102it [00:00, 170.11it/s]
122it [00:00, 178.02it/s]
141it [00:00, 172.56it/s]
159it [00:00, 171.95it/s]
179it [00:00, 177.35it/s]
198it [00:01, 180.80it/s]
217it [00:01, 170.73it/s]
236it [00:01, 175.32it/s]
254it [00:01, 171.87it/s]
272it [00:01, 173.69it/s]
290it [00:01, 164.35it/s]
311it [00:01, 176.57it/s]
332it [00:01, 182.51it/s]
351it [00:01, 183.86it/s]
376it [00:02, 201.58it/s]
397it [00:02, 202.75it/s]
418it [00:02, 187.96it/s]
440it [00:02, 195.63it/s]
462it [00:02, 200.77it/s]
483it [00:02, 174.47it/s]
502it [00:02, 167.89it/s]
522it [00:02, 175.72it/s]
541it [00:02, 176.27it/s]
562it [00:03, 185.00it/s]
583it [00:03, 181.38it/s]
602it [00:03, 180.55it/s]
621it [00:03, 173.50it/s]
642it [00:03, 181.94it/s]
664it [00:03, 191.56it/s]
684it [00:03, 180.22it/s]
703it [00:03, 180.36it/s]
722it [00:04, 161.28it/s]
739it [00:04, 162.73it/s]
756it [00:04, 155.35it/s]
776it [00:04, 167.03it/s]
794it [00:04, 168.87it/s]
814it [00:04, 177.02it/s]
832it [00:04, 168.93it/s]
853it [00:04, 172.51it/s]
871it [00:04, 171.19it/s]
889it [00:05, 172.21it/s]
907it [00:05, 173.70it/s]
925it [00:05, 171.14it/s]
943it [00:05, 173.34it/s]
962it [00:05, 177.42it/s]
984it [00:05, 184.16it/s]
1003it [00:05, 159.77it/s]
1026it [00:05, 172.70it/s]
1045it [00:05, 175.27it/s]
1064it [00:06, 178.89it/s]
1083it [00:06, 177.83it/s]
1101it [00:06, 177.45it/s]
1119it [00:06, 174.77it/s]
1140it [00:06, 183.41it/s]
1160it [00:06, 186.72it/s]
1179it [00:06, 187.54it/s]
1202it [00:06, 197.26it/s]
1224it [00:06, 203.40it/s]
1246it [00:06, 202.60it/s]
1267it [00:07, 189.42it/s]
1287it [00:07, 183.84it/s]
1306it [00:07, 169.99it/s]
1324it [00:07, 154.52it/s]
1341it [00:07, 157.58it/s]
1358it [00:07, 160.08it/s]
1379it [00:07, 173.41it/s]
1397it [00:07, 171.25it/s]
1419it [00:07, 183.28it/s]
1441it [00:08, 192.30it/s]
1461it [00:08, 190.12it/s]
1481it [00:08, 177.70it/s]
1500it [00:08, 173.72it/s]
1518it [00:08, 164.11it/s]
1535it [00:08, 161.61it/s]
1554it [00:08, 168.92it/s]
1572it [00:08, 171.30it/s]
1590it [00:08, 171.34it/s]
1609it [00:09, 175.39it/s]
1629it [00:09, 180.96it/s]
1649it [00:09, 185.83it/s]
1668it [00:09, 185.67it/s]
1691it [00:09, 195.72it/s]
1715it [00:09, 206.00it/s]
1736it [00:09, 206.05it/s]
1757it [00:09, 196.08it/s]
1777it [00:09, 194.91it/s]
1797it [00:10, 185.22it/s]
1816it [00:10, 177.24it/s]
1835it [00:10, 178.62it/s]
1853it [00:10, 170.74it/s]
1875it [00:10, 182.30it/s]
1894it [00:10, 183.47it/s]
1914it [00:10, 188.10it/s]
1933it [00:10, 184.04it/s]
1955it [00:10, 193.47it/s]
1975it [00:11, 191.19it/s]
1995it [00:11, 176.06it/s]
2015it [00:11, 182.29it/s]
2037it [00:11, 191.59it/s]
2058it [00:11, 194.54it/s]
2078it [00:11, 189.83it/s]
2098it [00:11, 191.69it/s]
2118it [00:11, 178.64it/s]
2137it [00:11, 181.38it/s]
2156it [00:12, 167.97it/s]
2174it [00:12, 171.08it/s]
2192it [00:12, 169.38it/s]
2211it [00:12, 174.24it/s]
2229it [00:12, 165.09it/s]
2250it [00:12, 176.66it/s]
2268it [00:12, 176.92it/s]
2288it [00:12, 183.52it/s]
2307it [00:12, 176.68it/s]
2327it [00:12, 180.99it/s]
2346it [00:13, 178.25it/s]
2364it [00:13, 178.51it/s]
2382it [00:13, 169.54it/s]
2401it [00:13, 175.24it/s]
2423it [00:13, 186.87it/s]
2442it [00:13, 177.60it/s]
2461it [00:13, 179.06it/s]
2483it [00:13, 190.52it/s]
2503it [00:13, 191.87it/s]
2524it [00:14, 194.04it/s]
2544it [00:14, 184.02it/s]
2563it [00:14, 183.84it/s]
2582it [00:14, 175.91it/s]
2604it [00:14, 185.04it/s]
2623it [00:14, 171.43it/s]
2641it [00:14, 166.36it/s]
2661it [00:14, 172.16it/s]
2679it [00:14, 168.14it/s]
2696it [00:15, 149.06it/s]
2716it [00:15, 161.08it/s]
2736it [00:15, 170.82it/s]
2754it [00:15, 165.21it/s]
2771it [00:15, 161.54it/s]
2790it [00:15, 168.53it/s]
2808it [00:15, 164.58it/s]
2828it [00:15, 172.78it/s]
2848it [00:15, 179.45it/s]
2870it [00:16, 190.10it/s]
2890it [00:16, 185.03it/s]
2909it [00:16, 170.33it/s]
2927it [00:16, 165.96it/s]
2946it [00:16, 170.96it/s]
2966it [00:16, 176.30it/s]
2988it [00:16, 186.74it/s]
3007it [00:16, 171.06it/s]
3029it [00:16, 178.22it/s]
3048it [00:17, 171.92it/s]
3066it [00:17, 158.78it/s]
3083it [00:17, 152.69it/s]
3101it [00:17, 159.10it/s]
3120it [00:17, 166.15it/s]
3140it [00:17, 170.64it/s]
3158it [00:17, 169.24it/s]
3176it [00:17, 166.81it/s]
3200it [00:18, 185.88it/s]
3219it [00:18, 175.63it/s]
3240it [00:18, 184.27it/s]
3259it [00:18, 181.95it/s]
3278it [00:18, 175.22it/s]
3296it [00:18, 170.29it/s]
3314it [00:18, 170.71it/s]
3332it [00:18, 167.41it/s]
3353it [00:18, 173.25it/s]
3371it [00:19, 173.65it/s]
3389it [00:19, 167.48it/s]
3406it [00:19, 166.72it/s]
3425it [00:19, 172.45it/s]
3445it [00:19, 178.65it/s]
3463it [00:19, 178.93it/s]
3481it [00:19, 178.32it/s]
3499it [00:19, 172.59it/s]
3518it [00:19, 177.15it/s]
3536it [00:19, 177.45it/s]
3554it [00:20, 175.20it/s]
3572it [00:20, 173.28it/s]
3591it [00:20, 175.69it/s]
3610it [00:20, 179.68it/s]
3628it [00:20, 170.59it/s]
3646it [00:20, 170.74it/s]
3667it [00:20, 178.96it/s]
3688it [00:20, 184.80it/s]
3708it [00:20, 186.05it/s]
3728it [00:21, 188.05it/s]
3747it [00:21, 188.28it/s]
3766it [00:21, 186.41it/s]
3785it [00:21, 175.82it/s]
3803it [00:21, 176.44it/s]
3822it [00:21, 179.16it/s]
3840it [00:21, 177.35it/s]
3860it [00:21, 183.63it/s]
3880it [00:21, 187.23it/s]
3899it [00:21, 186.55it/s]
3918it [00:22, 179.25it/s]
3937it [00:22, 176.37it/s]
3955it [00:22, 169.83it/s]
3976it [00:22, 180.80it/s]
3995it [00:22, 171.66it/s]
4014it [00:22, 176.08it/s]
4032it [00:22, 167.00it/s]
4049it [00:22, 164.67it/s]
4066it [00:22, 160.60it/s]
4087it [00:23, 169.13it/s]
4104it [00:23, 164.40it/s]
4126it [00:23, 179.15it/s]
4145it [00:23, 173.45it/s]
4163it [00:23, 166.22it/s]
4180it [00:23, 165.54it/s]
4197it [00:23, 165.87it/s]
4218it [00:23, 177.40it/s]
4236it [00:23, 169.82it/s]
4254it [00:24, 167.08it/s]
4274it [00:24, 174.78it/s]
4292it [00:24, 171.99it/s]
4310it [00:24, 167.19it/s]
4329it [00:24, 172.67it/s]
4347it [00:24, 172.68it/s]
4366it [00:24, 176.84it/s]
4390it [00:24, 192.22it/s]
4410it [00:24, 186.01it/s]
4429it [00:25, 173.28it/s]
4451it [00:25, 182.34it/s]
4470it [00:25, 171.44it/s]
4488it [00:25, 164.04it/s]
4505it [00:25, 165.47it/s]
4523it [00:25, 168.33it/s]
4540it [00:25, 148.59it/s]
4559it [00:25, 159.18it/s]
4578it [00:25, 167.35it/s]
4598it [00:26, 176.09it/s]
4618it [00:26, 179.41it/s]
4637it [00:26, 176.23it/s]
4655it [00:26, 172.88it/s]
4674it [00:26, 176.30it/s]
4692it [00:26, 172.93it/s]
4711it [00:26, 177.63it/s]
4729it [00:26, 170.20it/s]
4748it [00:26, 175.11it/s]
4769it [00:27, 183.21it/s]
4789it [00:27, 187.66it/s]
4808it [00:27, 168.19it/s]
4827it [00:27, 173.24it/s]
4845it [00:27, 166.22it/s]
4865it [00:27, 175.12it/s]
4883it [00:27, 167.37it/s]
4900it [00:27, 164.75it/s]
4921it [00:27, 175.72it/s]
4939it [00:28, 162.24it/s]
4959it [00:28, 169.51it/s]
4977it [00:28, 165.98it/s]
4995it [00:28, 168.04it/s]
5013it [00:28, 170.35it/s]
5031it [00:28, 171.03it/s]
5049it [00:28, 169.27it/s]
5069it [00:28, 174.99it/s]
5087it [00:28, 176.37it/s]
5105it [00:29, 170.28it/s]
5123it [00:29, 169.58it/s]
5143it [00:29, 175.44it/s]
5163it [00:29, 180.52it/s]
5182it [00:29, 165.29it/s]
5203it [00:29, 175.51it/s]
5222it [00:29, 175.87it/s]
5243it [00:29, 184.37it/s]
5262it [00:29, 184.54it/s]
5282it [00:29, 183.43it/s]
5304it [00:30, 187.66it/s]
5323it [00:30, 177.16it/s]
5347it [00:30, 193.42it/s]
5367it [00:30, 193.70it/s]
5387it [00:30, 179.36it/s]
5406it [00:30, 175.36it/s]
5426it [00:30, 180.13it/s]
5445it [00:30, 180.68it/s]
5464it [00:30, 178.61it/s]
5482it [00:31, 170.94it/s]
5500it [00:31, 169.73it/s]
5518it [00:31, 172.45it/s]
5536it [00:31, 164.51it/s]
5553it [00:31, 163.68it/s]
5573it [00:31, 172.36it/s]
5591it [00:31, 173.60it/s]
5609it [00:31, 171.82it/s]
5628it [00:31, 173.98it/s]
5646it [00:32, 172.46it/s]
5664it [00:32, 173.60it/s]
5685it [00:32, 182.11it/s]
5706it [00:32, 185.91it/s]
5726it [00:32, 184.63it/s]
5745it [00:32, 179.72it/s]
5765it [00:32, 182.80it/s]
5789it [00:32, 198.51it/s]
5809it [00:32, 190.48it/s]
5830it [00:33, 187.55it/s]
5849it [00:33, 177.05it/s]
5868it [00:33, 180.06it/s]
5888it [00:33, 184.68it/s]
5909it [00:33, 188.71it/s]
5928it [00:33, 185.01it/s]
5947it [00:33, 177.67it/s]
5965it [00:33, 160.50it/s]
5982it [00:33, 154.57it/s]
6001it [00:34, 163.79it/s]
6022it [00:34, 175.00it/s]
6046it [00:34, 190.90it/s]
6066it [00:34, 182.42it/s]
6086it [00:34, 187.07it/s]
6105it [00:34, 181.94it/s]
6124it [00:34, 157.58it/s]
6147it [00:34, 175.43it/s]
6166it [00:34, 172.48it/s]
6184it [00:35, 157.16it/s]
6202it [00:35, 161.52it/s]
6222it [00:35, 169.35it/s]
6240it [00:35, 170.81it/s]
6258it [00:35, 170.87it/s]
6277it [00:35, 173.85it/s]
6295it [00:35, 165.38it/s]
6312it [00:35, 163.41it/s]
6331it [00:35, 169.70it/s]
6349it [00:36, 165.54it/s]
6367it [00:36, 166.55it/s]
6384it [00:36, 163.69it/s]
6405it [00:36, 176.15it/s]
6423it [00:36, 174.02it/s]
6445it [00:36, 186.14it/s]
6464it [00:36, 184.50it/s]
6483it [00:36, 186.01it/s]
6503it [00:36, 189.47it/s]
6522it [00:37, 188.34it/s]
6541it [00:37, 165.68it/s]
6559it [00:37, 168.67it/s]
6582it [00:37, 179.05it/s]
6603it [00:37, 187.12it/s]
6625it [00:37, 195.89it/s]
6645it [00:37, 182.13it/s]
6664it [00:37, 171.34it/s]
6685it [00:37, 179.30it/s]
6704it [00:38, 176.49it/s]
6722it [00:38, 166.41it/s]
6739it [00:38, 164.72it/s]
6759it [00:38, 174.30it/s]
6780it [00:38, 184.06it/s]
6799it [00:38, 178.65it/s]
6818it [00:38, 174.97it/s]
6838it [00:38, 179.44it/s]
6860it [00:38, 189.73it/s]
6882it [00:39, 197.04it/s]
6903it [00:39, 200.34it/s]
6924it [00:39, 192.77it/s]
6945it [00:39, 196.15it/s]
6965it [00:39, 196.72it/s]
6985it [00:39, 179.87it/s]
7004it [00:39, 179.76it/s]
7026it [00:39, 189.21it/s]
7046it [00:39, 180.06it/s]
7065it [00:40, 182.27it/s]
7084it [00:40, 169.32it/s]
7106it [00:40, 182.24it/s]
7125it [00:40, 182.83it/s]
7146it [00:40, 188.12it/s]
7167it [00:40, 192.23it/s]
7187it [00:40, 176.43it/s]
7210it [00:40, 190.40it/s]
7230it [00:40, 188.12it/s]
7250it [00:41, 179.21it/s]
7269it [00:41, 176.24it/s]
7289it [00:41, 178.26it/s]
7307it [00:41, 178.41it/s]
7325it [00:41, 177.10it/s]
7345it [00:41, 181.85it/s]
7367it [00:41, 191.21it/s]
7387it [00:41, 186.32it/s]
7406it [00:41, 161.48it/s]
7425it [00:42, 168.72it/s]
7444it [00:42, 172.19it/s]
7463it [00:42, 176.92it/s]
7482it [00:42, 165.49it/s]
7503it [00:42, 177.42it/s]
7522it [00:42, 167.46it/s]
7540it [00:42, 166.39it/s]
7562it [00:42, 180.96it/s]
7587it [00:42, 198.82it/s]
7608it [00:43, 188.48it/s]
7628it [00:43, 180.28it/s]
7647it [00:43, 166.34it/s]
7671it [00:43, 184.39it/s]
7690it [00:43, 184.97it/s]
7712it [00:43, 187.10it/s]
7731it [00:43, 180.91it/s]
7753it [00:43, 188.65it/s]
7775it [00:43, 192.88it/s]
7795it [00:44, 190.89it/s]
7815it [00:44, 192.50it/s]
7835it [00:44, 193.75it/s]
7855it [00:44, 185.88it/s]
7874it [00:44, 180.26it/s]
7893it [00:44, 168.59it/s]
7911it [00:44, 171.28it/s]
7934it [00:44, 187.40it/s]
7953it [00:44, 182.66it/s]
7972it [00:45, 178.19it/s]
7994it [00:45, 189.15it/s]
8014it [00:45, 188.35it/s]
8033it [00:45, 170.01it/s]
8053it [00:45, 176.44it/s]
8073it [00:45, 178.85it/s]
8093it [00:45, 183.17it/s]
8112it [00:45, 182.26it/s]
8131it [00:45, 182.62it/s]
8150it [00:46, 169.16it/s]
8168it [00:46, 170.65it/s]
8186it [00:46, 155.97it/s]
8204it [00:46, 160.72it/s]
8221it [00:46, 162.34it/s]
8244it [00:46, 181.15it/s]
8263it [00:46, 181.18it/s]
8286it [00:46, 193.23it/s]
8309it [00:46, 202.13it/s]
8330it [00:47, 189.74it/s]
8351it [00:47, 192.51it/s]
8371it [00:47, 184.12it/s]
8392it [00:47, 191.07it/s]
8412it [00:47, 185.89it/s]
8433it [00:47, 191.49it/s]
8453it [00:47, 189.90it/s]
8473it [00:47, 183.71it/s]
8492it [00:47, 181.20it/s]
8515it [00:48, 194.23it/s]
8538it [00:48, 193.78it/s]
8558it [00:48, 178.84it/s]
8579it [00:48, 182.40it/s]
8598it [00:48, 180.25it/s]
8617it [00:48, 176.37it/s]
8635it [00:48, 175.51it/s]
8653it [00:48, 171.14it/s]
8675it [00:48, 183.53it/s]
8694it [00:49, 178.63it/s]
8717it [00:49, 190.32it/s]
8740it [00:49, 197.04it/s]
8760it [00:49, 189.48it/s]
8780it [00:49, 191.76it/s]
8801it [00:49, 194.41it/s]
8821it [00:49, 194.07it/s]
8843it [00:49, 200.16it/s]
8864it [00:49, 192.24it/s]
8884it [00:49, 187.56it/s]
8906it [00:50, 195.73it/s]
8926it [00:50, 178.14it/s]
8946it [00:50, 183.08it/s]
8967it [00:50, 189.84it/s]
8991it [00:50, 202.50it/s]
9012it [00:50, 189.22it/s]
9034it [00:50, 195.27it/s]
9055it [00:50, 197.16it/s]
9075it [00:50, 187.32it/s]
9094it [00:51, 175.67it/s]
9112it [00:51, 175.09it/s]
9131it [00:51, 176.68it/s]
9149it [00:51, 176.39it/s]
9168it [00:51, 177.52it/s]
9186it [00:51, 170.93it/s]
9204it [00:51, 168.14it/s]
9222it [00:51, 168.51it/s]
9246it [00:51, 187.05it/s]
9265it [00:52, 169.20it/s]
9287it [00:52, 181.40it/s]
9306it [00:52, 162.39it/s]
9329it [00:52, 179.73it/s]
9348it [00:52, 166.03it/s]
9372it [00:52, 184.34it/s]
9392it [00:52, 187.89it/s]
9412it [00:52, 183.49it/s]
9431it [00:53, 183.51it/s]
9450it [00:53, 183.50it/s]
9469it [00:53, 167.73it/s]
9487it [00:53, 165.36it/s]
9504it [00:53, 164.91it/s]
9521it [00:53, 164.28it/s]
9541it [00:53, 173.16it/s]
9561it [00:53, 178.38it/s]
9579it [00:53, 177.39it/s]
9600it [00:54, 184.21it/s]
9620it [00:54, 186.35it/s]
9639it [00:54, 183.94it/s]
9658it [00:54, 171.21it/s]
9681it [00:54, 185.59it/s]
9700it [00:54, 167.29it/s]
9718it [00:54, 166.39it/s]
9735it [00:54, 162.81it/s]
9752it [00:54, 163.11it/s]
9774it [00:55, 177.20it/s]
9797it [00:55, 188.88it/s]
9820it [00:55, 198.60it/s]
9840it [00:55, 183.26it/s]
9860it [00:55, 185.32it/s]
9879it [00:55, 182.63it/s]
9901it [00:55, 192.22it/s]
9923it [00:55, 198.28it/s]
9945it [00:55, 201.44it/s]
9966it [00:55, 192.02it/s]
9986it [00:56, 173.72it/s]
10006it [00:56, 179.21it/s]
10025it [00:56, 175.79it/s]
10043it [00:56, 169.17it/s]
10062it [00:56, 173.61it/s]
10082it [00:56, 179.88it/s]
10101it [00:56, 175.46it/s]
10121it [00:56, 178.95it/s]
10139it [00:57, 173.27it/s]
10162it [00:57, 188.39it/s]
10181it [00:57, 178.84it/s]
10200it [00:57, 165.40it/s]
10221it [00:57, 177.06it/s]
10240it [00:57, 177.19it/s]
10261it [00:57, 178.53it/s]
10280it [00:57, 175.33it/s]
10298it [00:57, 175.33it/s]
10317it [00:58, 178.12it/s]
10337it [00:58, 182.10it/s]
10363it [00:58, 203.39it/s]
10384it [00:58, 196.28it/s]
10404it [00:58, 190.93it/s]
10428it [00:58, 203.78it/s]
10449it [00:58, 192.97it/s]
10473it [00:58, 200.89it/s]
10494it [00:58, 192.87it/s]
10518it [00:58, 205.32it/s]
10539it [00:59, 191.66it/s]
10559it [00:59, 182.65it/s]
10580it [00:59, 189.21it/s]
10600it [00:59, 187.01it/s]
10619it [00:59, 179.20it/s]
10639it [00:59, 183.35it/s]
10658it [00:59, 180.29it/s]
10677it [00:59, 157.18it/s]
10694it [01:00, 160.02it/s]
10712it [01:00, 162.61it/s]
10729it [01:00, 161.59it/s]
10752it [01:00, 170.24it/s]
10770it [01:00, 170.48it/s]
10788it [01:00, 170.65it/s]
10806it [01:00, 151.37it/s]
10822it [01:00, 151.67it/s]
10839it [01:00, 156.06it/s]
10859it [01:01, 165.13it/s]
10876it [01:01, 160.52it/s]
10894it [01:01, 163.15it/s]
10915it [01:01, 174.22it/s]
10933it [01:01, 165.74it/s]
10950it [01:01, 162.63it/s]
10967it [01:01, 159.12it/s]
10985it [01:01, 162.87it/s]
11003it [01:01, 165.58it/s]
11023it [01:02, 174.07it/s]
11042it [01:02, 175.99it/s]
11062it [01:02, 182.46it/s]
11081it [01:02, 180.45it/s]
11101it [01:02, 186.00it/s]
11122it [01:02, 190.70it/s]
11142it [01:02, 191.86it/s]
11162it [01:02, 187.96it/s]
11181it [01:02, 185.49it/s]
11200it [01:02, 185.06it/s]
11223it [01:03, 195.31it/s]
11243it [01:03, 178.43it/s]
11263it [01:03, 182.96it/s]
11284it [01:03, 188.88it/s]
11304it [01:03, 177.90it/s]
11326it [01:03, 187.84it/s]
11346it [01:03, 185.06it/s]
11368it [01:03, 194.25it/s]
11389it [01:03, 197.09it/s]
11409it [01:04, 169.47it/s]
11427it [01:04, 167.23it/s]
11445it [01:04, 168.24it/s]
11463it [01:04, 170.40it/s]
11481it [01:04, 163.67it/s]
11498it [01:04, 164.42it/s]
11517it [01:04, 171.09it/s]
11536it [01:04, 174.61it/s]
11554it [01:04, 175.00it/s]
11572it [01:05, 176.41it/s]
11591it [01:05, 179.40it/s]
11609it [01:05, 172.07it/s]
11632it [01:05, 184.34it/s]
11653it [01:05, 190.11it/s]
11673it [01:05, 191.29it/s]
11693it [01:05, 187.17it/s]
11712it [01:05, 179.00it/s]
11733it [01:05, 185.80it/s]
11752it [01:06, 176.85it/s]
11771it [01:06, 177.32it/s]
11789it [01:06, 174.68it/s]
11810it [01:06, 180.90it/s]
11829it [01:06, 169.76it/s]
11848it [01:06, 175.20it/s]
11870it [01:06, 187.66it/s]
11889it [01:06, 177.40it/s]
11913it [01:06, 193.33it/s]
11933it [01:07, 175.57it/s]
11952it [01:07, 171.69it/s]
11974it [01:07, 183.77it/s]
11995it [01:07, 190.33it/s]
12015it [01:07, 185.73it/s]
12035it [01:07, 187.17it/s]
12054it [01:07, 173.55it/s]
12072it [01:07, 161.69it/s]
12094it [01:07, 175.13it/s]
12113it [01:08, 177.80it/s]
12132it [01:08, 164.27it/s]
12151it [01:08, 165.25it/s]
12168it [01:08, 159.05it/s]
12185it [01:08, 160.37it/s]
12203it [01:08, 165.57it/s]
12223it [01:08, 172.98it/s]
12247it [01:08, 189.89it/s]
12267it [01:08, 185.67it/s]
12286it [01:09, 182.74it/s]
12306it [01:09, 186.17it/s]
12325it [01:09, 181.32it/s]
12346it [01:09, 188.08it/s]
12365it [01:09, 175.53it/s]
12387it [01:09, 184.86it/s]
12406it [01:09, 182.08it/s]
12426it [01:09, 185.03it/s]
12446it [01:09, 184.58it/s]
12465it [01:10, 184.71it/s]
12484it [01:10, 183.93it/s]
12509it [01:10, 200.30it/s]
12531it [01:10, 205.16it/s]
12552it [01:10, 182.28it/s]
12573it [01:10, 189.10it/s]
12593it [01:10, 187.70it/s]
12613it [01:10, 175.04it/s]
12631it [01:10, 170.76it/s]
12650it [01:11, 175.12it/s]
12669it [01:11, 177.30it/s]
12687it [01:11, 174.20it/s]
12709it [01:11, 183.31it/s]
12728it [01:11, 182.28it/s]
12747it [01:11, 171.71it/s]
12771it [01:11, 189.36it/s]
12791it [01:11, 188.03it/s]
12810it [01:11, 181.00it/s]
12829it [01:12, 178.62it/s]
12848it [01:12, 179.43it/s]
12867it [01:12, 172.03it/s]
12885it [01:12, 167.93it/s]
12908it [01:12, 181.70it/s]
12928it [01:12, 186.66it/s]
12947it [01:12, 179.75it/s]
12966it [01:12, 176.85it/s]
12985it [01:12, 180.12it/s]
13004it [01:13, 176.34it/s]
13024it [01:13, 182.58it/s]
13043it [01:13, 183.48it/s]
13066it [01:13, 195.80it/s]
13086it [01:13, 178.87it/s]
13108it [01:13, 189.47it/s]
13128it [01:13, 191.33it/s]
13148it [01:13, 180.78it/s]
13172it [01:13, 192.54it/s]
13193it [01:14, 196.31it/s]
13213it [01:14, 187.64it/s]
13232it [01:14, 178.23it/s]
13252it [01:14, 183.82it/s]
13273it [01:14, 188.93it/s]
13293it [01:14, 181.90it/s]
13312it [01:14, 178.20it/s]
13336it [01:14, 194.36it/s]
13356it [01:14, 193.87it/s]
13376it [01:15, 193.39it/s]
13396it [01:15, 188.16it/s]
13416it [01:15, 185.90it/s]
13435it [01:15, 186.38it/s]
13455it [01:15, 188.71it/s]
13474it [01:15, 186.79it/s]
13493it [01:15, 181.65it/s]
13512it [01:15, 173.79it/s]
13530it [01:15, 175.20it/s]
13548it [01:15, 166.62it/s]
13567it [01:16, 171.87it/s]
13587it [01:16, 175.98it/s]
13605it [01:16, 174.71it/s]
13623it [01:16, 173.16it/s]
13642it [01:16, 176.41it/s]
13661it [01:16, 179.78it/s]
13684it [01:16, 193.20it/s]
13704it [01:16, 163.21it/s]
13722it [01:16, 165.00it/s]
13740it [01:17, 159.93it/s]
13757it [01:17, 155.70it/s]
13778it [01:17, 166.41it/s]
13796it [01:17, 168.21it/s]
13814it [01:17, 168.46it/s]
13838it [01:17, 186.91it/s]
13860it [01:17, 196.29it/s]
13881it [01:17, 191.80it/s]
13901it [01:17, 191.43it/s]
13921it [01:18, 187.87it/s]
13941it [01:18, 190.68it/s]
13961it [01:18, 192.04it/s]
13984it [01:18, 199.93it/s]
14005it [01:18, 191.43it/s]
14026it [01:18, 191.78it/s]
14046it [01:18, 182.08it/s]
14068it [01:18, 192.22it/s]
14088it [01:18, 194.39it/s]
14108it [01:19, 190.46it/s]
14128it [01:19, 186.54it/s]
14147it [01:19, 174.72it/s]
14169it [01:19, 184.78it/s]
14188it [01:19, 169.63it/s]
14208it [01:19, 177.19it/s]
14227it [01:19, 179.97it/s]
14247it [01:19, 184.69it/s]
14266it [01:19, 182.05it/s]
14285it [01:20, 180.56it/s]
14310it [01:20, 198.09it/s]
14330it [01:20, 176.21it/s]
14349it [01:20, 174.39it/s]
14367it [01:20, 165.48it/s]
14387it [01:20, 173.05it/s]
14405it [01:20, 172.19it/s]
14423it [01:20, 164.65it/s]
14440it [01:20, 164.75it/s]
14457it [01:21, 165.39it/s]
14475it [01:21, 167.20it/s]
14492it [01:21, 152.92it/s]
14510it [01:21, 157.43it/s]
14535it [01:21, 181.55it/s]
14554it [01:21, 180.91it/s]
14576it [01:21, 191.00it/s]
14596it [01:21, 182.71it/s]
14619it [01:21, 194.14it/s]
14639it [01:22, 183.83it/s]
14658it [01:22, 183.30it/s]
14677it [01:22, 173.74it/s]
14700it [01:22, 184.36it/s]
14724it [01:22, 196.79it/s]
14744it [01:22, 189.85it/s]
14764it [01:22, 186.26it/s]
14786it [01:22, 194.13it/s]
14806it [01:22, 194.29it/s]
14827it [01:23, 197.31it/s]
14847it [01:23, 192.79it/s]
14867it [01:23, 184.24it/s]
14886it [01:23, 183.13it/s]
14905it [01:23, 182.11it/s]
14926it [01:23, 188.91it/s]
14946it [01:23, 189.60it/s]
14966it [01:23, 191.12it/s]
14986it [01:23, 189.62it/s]
15006it [01:24, 192.21it/s]
15028it [01:24, 199.10it/s]
15050it [01:24, 203.77it/s]
15071it [01:24, 199.07it/s]
15092it [01:24, 193.34it/s]
15112it [01:24, 180.99it/s]
15131it [01:24, 175.08it/s]
15149it [01:24, 173.26it/s]
15168it [01:24, 177.74it/s]
15186it [01:25, 175.52it/s]
15204it [01:25, 167.97it/s]
15222it [01:25, 168.48it/s]
15240it [01:25, 169.58it/s]
15259it [01:25, 174.56it/s]
15277it [01:25, 171.09it/s]
15295it [01:25, 162.83it/s]
15312it [01:25, 158.24it/s]
15332it [01:25, 168.84it/s]
15353it [01:25, 178.26it/s]
15373it [01:26, 183.24it/s]
15392it [01:26, 177.79it/s]
15411it [01:26, 178.02it/s]
15429it [01:26, 174.02it/s]
15447it [01:26, 175.12it/s]
15469it [01:26, 187.92it/s]
15488it [01:26, 183.10it/s]
15507it [01:26, 181.70it/s]
15530it [01:26, 195.34it/s]
15550it [01:27, 194.44it/s]
15570it [01:27, 181.83it/s]
15592it [01:27, 190.50it/s]
15613it [01:27, 193.93it/s]
15633it [01:27, 176.43it/s]
15652it [01:27, 172.55it/s]
15670it [01:27, 173.82it/s]
15688it [01:27, 170.76it/s]
15706it [01:27, 167.08it/s]
15723it [01:28, 159.81it/s]
15741it [01:28, 164.48it/s]
15759it [01:28, 168.46it/s]
15778it [01:28, 168.99it/s]
15795it [01:28, 166.55it/s]
15818it [01:28, 182.71it/s]
15838it [01:28, 182.94it/s]
15858it [01:28, 185.11it/s]
15877it [01:28, 165.76it/s]
15894it [01:29, 166.40it/s]
15914it [01:29, 175.18it/s]
15932it [01:29, 173.21it/s]
15953it [01:29, 183.15it/s]
15972it [01:29, 173.84it/s]
15990it [01:29, 168.64it/s]
16009it [01:29, 169.97it/s]
16029it [01:29, 177.73it/s]
16047it [01:29, 168.47it/s]
16065it [01:30, 169.16it/s]
16092it [01:30, 192.27it/s]
16112it [01:30, 186.15it/s]
16133it [01:30, 192.46it/s]
16154it [01:30, 197.31it/s]
16174it [01:30, 194.20it/s]
16195it [01:30, 195.20it/s]
16216it [01:30, 198.66it/s]
16240it [01:30, 207.11it/s]
16261it [01:31, 194.06it/s]
16281it [01:31, 191.95it/s]
16301it [01:31, 184.09it/s]
16320it [01:31, 180.67it/s]
16340it [01:31, 185.17it/s]
16359it [01:31, 177.58it/s]
16382it [01:31, 189.18it/s]
16402it [01:31, 181.57it/s]
16421it [01:31, 181.00it/s]
16445it [01:32, 196.93it/s]
16466it [01:32, 193.55it/s]
16486it [01:32, 194.78it/s]
16506it [01:32, 193.99it/s]
16526it [01:32, 187.71it/s]
16546it [01:32, 189.39it/s]
16566it [01:32, 178.69it/s]
16588it [01:32, 186.10it/s]
16607it [01:32, 175.20it/s]
16627it [01:33, 181.62it/s]
16649it [01:33, 191.64it/s]
16671it [01:33, 198.61it/s]
16692it [01:33, 198.30it/s]
16712it [01:33, 176.44it/s]
16731it [01:33, 174.94it/s]
16749it [01:33, 174.74it/s]
16768it [01:33, 175.98it/s]
16786it [01:33, 155.54it/s]
16803it [01:34, 134.17it/s]
16818it [01:34, 134.53it/s]
16834it [01:34, 137.88it/s]
16854it [01:34, 151.69it/s]
16875it [01:34, 164.55it/s]
16892it [01:34, 164.44it/s]
16909it [01:34, 162.21it/s]
16929it [01:34, 166.59it/s]
16947it [01:34, 165.55it/s]
16968it [01:35, 177.88it/s]
16988it [01:35, 184.16it/s]
17007it [01:35, 171.23it/s]
17029it [01:35, 183.69it/s]
17048it [01:35, 165.90it/s]
17067it [01:35, 171.50it/s]
17089it [01:35, 183.62it/s]
17109it [01:35, 187.98it/s]
17129it [01:35, 188.26it/s]
17149it [01:36, 187.33it/s]
17168it [01:36, 185.55it/s]
17192it [01:36, 196.25it/s]
17212it [01:36, 188.30it/s]
17231it [01:36, 175.31it/s]
17253it [01:36, 186.64it/s]
17272it [01:36, 185.86it/s]
17291it [01:36, 182.76it/s]
17310it [01:36, 171.27it/s]
17329it [01:37, 170.79it/s]
17348it [01:37, 175.56it/s]
17366it [01:37, 175.38it/s]
17384it [01:37, 172.91it/s]
17402it [01:37, 171.78it/s]
17414it [01:37, 178.52it/s]
/opt/hostedtoolcache/Python/3.12.9/x64/lib/python3.12/site-packages/AFQ/tasks/segmentation.py:61: UserWarning:
Pass ['to_space'] as keyword args. From version 2.0.0 passing these as positional arguments will result in an error.
References#
- 1
Hoy AR, Koay CG, Kecskemeti SR, Alexander AL. Optimization of a free water elimination two-compartment model for diffusion tensor imaging. Neuroimage. 2014;103:323-333.
- 2
Henriques RN, Rokem A, Garyfallidis E, St-Jean S, Peterson ET, Correia MM. [Re] Optimization of a free water elimination two-compartment model for diffusion tensor imaging. bioRxiv. February 2017:108795. doi:10.1101/108795
- 3
Alexander LM, Escalera J, Ai L, et al. An open resource for transdiagnostic research in pediatric mental health and learning disorders. Sci Data. 2017;4:170181.
- 4
Richie-Halford A, Cieslak M, Ai L, et al. An analysis-ready and quality controlled resource for pediatric brain white-matter research. Scientific Data. 2022;9(1):1-27.
Total running time of the script: (36 minutes 14.791 seconds)
Estimated memory usage: 3804 MB