import logging
import numpy as np
import scipy.ndimage as ndim
from skimage.morphology import binary_dilation, convex_hull_image
from scipy.spatial.distance import dice
import nibabel as nib
from dipy.io.utils import (create_nifti_header, get_reference_info)
from dipy.tracking.streamline import select_random_set_of_streamlines
import dipy.tracking.utils as dtu
[docs]logger = logging.getLogger('AFQ')
[docs]def patch_up_roi(roi, bundle_name="ROI"):
"""
After being non-linearly transformed, ROIs tend to have holes in them.
We perform a couple of computational geometry operations on the ROI to
fix that up.
Parameters
----------
roi : 3D binary array
The ROI after it has been transformed.
bundle_name : str, optional
Name of bundle, which may be useful for error messages.
Default: None
Returns
-------
ROI after dilation and hole-filling
"""
hole_filled = ndim.binary_fill_holes(roi > 0)
if not np.any(hole_filled):
raise ValueError((
f"{bundle_name} found to be empty after "
"applying the mapping."))
return hole_filled
[docs]def density_map(tractogram, n_sls=None, normalize=False):
"""
Create a streamline density map.
based on:
https://dipy.org/documentation/1.1.1./examples_built/streamline_formats/
Parameters
----------
tractogram : StatefulTractogram
Stateful tractogram whose streamlines are used to make
the density map.
n_sls : int or None, optional
n_sls to randomly select to make the density map.
If None, all streamlines are used.
Default: None
normalize : bool, optional
Whether to normalize maximum values to 1.
Default: False
Returns
-------
Nifti1Image containing the density map.
"""
tractogram.to_vox()
sls = tractogram.streamlines
if n_sls is not None:
sls = select_random_set_of_streamlines(sls, n_sls)
affine, vol_dims, voxel_sizes, voxel_order = get_reference_info(tractogram)
tractogram_density = dtu.density_map(sls, np.eye(4), vol_dims)
if normalize:
tractogram_density = tractogram_density / tractogram_density.max()
nifti_header = create_nifti_header(affine, vol_dims, voxel_sizes)
density_map_img = nib.Nifti1Image(tractogram_density, affine, nifti_header)
return density_map_img
[docs]def dice_coeff(arr1, arr2, weighted=True):
"""
Compute Dice's coefficient between two images.
Parameters
----------
arr1 : Nifti1Image, str, ndarray
One ndarray to compare. Can be a path or image, which will be
converted to an ndarray.
arr2 : Nifti1Image, str, ndarray
The other ndarray to compare. Can be a path or image, which will be
converted to an ndarray.
weighted : bool, optional
Whether or not to weight the DICE coefficient as in [Cousineau2017]_.
The weighted Dice coefficient is calculated by adding the sum of all
values in arr1 where arr2 is nonzero to the sum of all values in arr2
where arr1 is nonzero, then dividing that by the sum of all values in
arr1 and arr2.
Default: True
Returns
-------
The dice similarity between the images.
Notes
-----
.. [1] Cousineau M, Jodoin PM, Morency FC, et al. A test-retest study on
Parkinson's PPMI dataset yields statistically significant white
matter fascicles. Neuroimage Clin. 2017;16:222-233. Published 2017
Jul 25. doi:10.1016/j.nicl.2017.07.020
"""
if isinstance(arr1, str):
arr1 = nib.load(arr1)
if isinstance(arr2, str):
arr2 = nib.load(arr2)
if isinstance(arr1, nib.Nifti1Image):
arr1 = arr1.get_fdata()
if isinstance(arr2, nib.Nifti1Image):
arr2 = arr2.get_fdata()
arr1 = arr1.flatten()
arr2 = arr2.flatten()
if weighted:
return (
np.sum(arr1 * arr2.astype(bool))
+ np.sum(arr2 * arr1.astype(bool)))\
/ (np.sum(arr1) + np.sum(arr2))
else:
# scipy's dice function returns the dice *dissimilarity*
return 1 - dice(
arr1.astype(bool),
arr2.astype(bool))