Source code for AFQ.tasks.mapping

import nibabel as nib
import os.path as op
import os
import numpy as np
import logging

import pimms
from AFQ.tasks.decorators import as_file
from AFQ.tasks.utils import with_name, str_to_desc
import AFQ.data.fetch as afd
from AFQ.utils.path import drop_extension, write_json
from AFQ.definitions.mapping import SynMap
from AFQ.definitions.utils import Definition
from AFQ.definitions.image import ImageDefinition

from dipy.io.streamline import load_tractogram
from dipy.io.stateful_tractogram import Space


[docs]logger = logging.getLogger('AFQ')
@pimms.calc("b0_warped") @as_file('_space-template_desc-b0_dwi.nii.gz')
[docs]def export_registered_b0(data_imap, mapping): """ full path to a nifti file containing b0 transformed to template space """ mean_b0 = nib.load(data_imap["b0"]).get_fdata() warped_b0 = mapping.transform(mean_b0) warped_b0 = nib.Nifti1Image(warped_b0, data_imap["reg_template"].affine) return warped_b0, dict(b0InSubject=data_imap["b0"])
@pimms.calc("template_xform") @as_file('_space-subject_desc-template_dwi.nii.gz')
[docs]def template_xform(mapping, data_imap): """ full path to a nifti file containing registration template transformed to subject space """ template_xform = mapping.transform_inverse( data_imap["reg_template"].get_fdata()) template_xform = nib.Nifti1Image(template_xform, data_imap["dwi_affine"]) return template_xform, dict()
@pimms.calc("rois")
[docs]def export_rois(base_fname, output_dir, data_imap, mapping): """ dictionary of full paths to Nifti1Image files of ROIs transformed to subject space """ bundle_dict = data_imap["bundle_dict"] rois_dir = op.join(output_dir, 'ROIs') os.makedirs(rois_dir, exist_ok=True) roi_files = {} base_roi_fname = op.join(rois_dir, op.split(base_fname)[1]) for bundle_name in bundle_dict: roi_files[bundle_name] = [] for roi_fname in bundle_dict.transform_rois( bundle_name, mapping, data_imap["dwi_affine"], base_fname=base_roi_fname): logger.info(f"Saving {roi_fname}") roi_files[bundle_name].append(roi_fname) meta = {} meta_fname = f'{drop_extension(roi_fname)}.json' write_json(meta_fname, meta) return {'rois': roi_files}
@pimms.calc("mapping")
[docs]def mapping(base_fname, dwi_data_file, reg_subject, data_imap, mapping_definition=None): """ mapping from subject to template space. Parameters ---------- mapping_definition : instance of `AFQ.definitions.mapping`, optional This defines how to either create a mapping from each subject space to template space or load a mapping from another software. If creating a map, will register reg_subject and reg_template. If None, use SynMap() Default: None """ reg_template = data_imap["reg_template"] if mapping_definition is None: mapping_definition = SynMap() if not isinstance(mapping_definition, Definition): raise TypeError( "mapping must be a mapping defined" + " in `AFQ.definitions.mapping`") return mapping_definition.get_for_subses( base_fname, data_imap["dwi"], dwi_data_file, reg_subject, reg_template)
@pimms.calc("mapping")
[docs]def sls_mapping(base_fname, dwi_data_file, reg_subject, data_imap, tractography_imap, mapping_definition=None): """ mapping from subject to template space. Parameters ---------- mapping_definition : instance of `AFQ.definitions.mapping`, optional This defines how to either create a mapping from each subject space to template space or load a mapping from another software. If creating a map, will register reg_subject and reg_template. If None, use SynMap() Default: None """ reg_template = data_imap["reg_template"] if mapping_definition is None: mapping_definition = SynMap() if not isinstance(mapping_definition, Definition): raise TypeError( "mapping must be a mapping defined" + " in `AFQ.definitions.mapping`") streamlines_file = tractography_imap["streamlines"] tg = load_tractogram( streamlines_file, reg_subject, Space.VOX, bbox_valid_check=False) tg.to_rasmm() atlas_fname = op.join( afd.afq_home, 'hcp_atlas_16_bundles', 'Atlas_in_MNI_Space_16_bundles', 'whole_brain', 'whole_brain_MNI.trk') if not op.exists(atlas_fname): afd.fetch_hcp_atlas_16_bundles() hcp_atlas = load_tractogram( atlas_fname, 'same', bbox_valid_check=False) return mapping_definition.get_for_subses( base_fname, data_imap["dwi"], dwi_data_file, reg_subject, reg_template, subject_sls=tg.streamlines, template_sls=hcp_atlas.streamlines)
@pimms.calc("reg_subject")
[docs]def get_reg_subject(data_imap, reg_subject_spec="power_map"): """ Nifti1Image which represents this subject when registering the subject to the template Parameters ---------- reg_subject_spec : str, instance of `AFQ.definitions.ImageDefinition`, optional # noqa The source image data to be registered. Can either be a Nifti1Image, an ImageFile, or str. if "b0", "dti_fa_subject", "subject_sls", or "power_map," image data will be loaded automatically. If "subject_sls" is used, slr registration will be used and reg_template should be "hcp_atlas". Default: "power_map" """ if not isinstance(reg_subject_spec, str)\ and not isinstance(reg_subject_spec, nib.Nifti1Image): # Note the ImageDefinition case is handled in get_mapping_plan raise TypeError( "reg_subject must be a str, ImageDefinition, or Nifti1Image") filename_dict = { "b0": "b0", "power_map": "csd_pmap", "dti_fa_subject": "dti_fa", "subject_sls": "b0", } bm = nib.load(data_imap["brain_mask"]) if reg_subject_spec in filename_dict: reg_subject_spec = data_imap[filename_dict[reg_subject_spec]] if isinstance(reg_subject_spec, str): img = nib.load(reg_subject_spec) bm = bm.get_fdata().astype(bool) masked_data = img.get_fdata() masked_data[~bm] = 0 img = nib.Nifti1Image(masked_data, img.affine) return img
[docs]def get_mapping_plan(kwargs, use_sls=False): mapping_tasks = with_name([ export_registered_b0, template_xform, export_rois, mapping, get_reg_subject]) # add custom scalars for scalar in kwargs["scalars"]: if isinstance(scalar, Definition): mapping_tasks[f"{scalar.get_name()}_res"] =\ pimms.calc(f"{scalar.get_name()}")( as_file(( f'_desc-{str_to_desc(scalar.get_name())}' '_dwi.nii.gz'))( scalar.get_image_getter("mapping"))) if use_sls: mapping_tasks["mapping_res"] = sls_mapping reg_ss = kwargs.get("reg_subject_spec", None) if isinstance(reg_ss, ImageDefinition): del kwargs["reg_subject_spec"] mapping_tasks["reg_subject_spec_res"] = pimms.calc("reg_subject_spec")( as_file(( f'_desc-{str_to_desc(reg_ss.get_name())}' '_dwi.nii.gz'))(reg_ss.get_image_getter("mapping"))) return pimms.plan(**mapping_tasks)