import numpy as np
import os.path as op
import os
import logging
import dipy.tracking.streamlinespeed as dps
from dipy.io.stateful_tractogram import StatefulTractogram, Space
import AFQ.recognition.utils as abu
from AFQ.api.bundle_dict import BundleDict
from AFQ.recognition.criteria import run_bundle_rec_plan
from AFQ.recognition.preprocess import get_preproc_plan
[docs]logger = logging.getLogger('AFQ')
[docs]def recognize(
tg,
img,
mapping,
bundle_dict,
reg_template,
nb_points=False,
nb_streamlines=False,
clip_edges=False,
parallel_segmentation={"engine": "serial"},
rb_recognize_params=dict(
model_clust_thr=1.25,
reduction_thr=25,
pruning_thr=12),
refine_reco=False,
prob_threshold=0,
dist_to_waypoint=None,
rng=None,
return_idx=False,
filter_by_endpoints=True,
dist_to_atlas=4,
save_intermediates=None,
cleaning_params={}):
"""
Segment streamlines into bundles.
Parameters
----------
tg : str, StatefulTractogram
Tractogram to segment.
img : str, nib.Nifti1Image
Image for reference.
mapping : MappingDefinition
Mapping from subject to template.
bundle_dict : dict or AFQ.api.BundleDict
Dictionary of bundles to segment.
reg_template : str, nib.Nifti1Image
Template image for registration.
nb_points : int, boolean
Resample streamlines to nb_points number of points.
If False, no resampling is done. Default: False
nb_streamlines : int, boolean
Subsample streamlines to nb_streamlines.
If False, no subsampling is don. Default: False
clip_edges : bool
Whether to clip the streamlines to be only in between the ROIs.
Default: False
parallel_segmentation : dict or AFQ.api.BundleDict
How to parallelize segmentation across processes when performing
waypoint ROI segmentation. Set to {"engine": "serial"} to not
perform parallelization. Some engines may cause errors, depending
on the system. See ``dipy.utils.parallel.paramap`` for
details.
Default: {"engine": "serial"}
rb_recognize_params : dict
RecoBundles parameters for the recognize function.
Default: dict(model_clust_thr=1.25, reduction_thr=25, pruning_thr=12)
refine_reco : bool
Whether to refine the RecoBundles segmentation.
Default: False
prob_threshold : float.
Using AFQ Algorithm.
Initial cleaning of fiber groups is done using probability maps
from [Hua2008]_. Here, we choose an average probability that
needs to be exceeded for an individual streamline to be retained.
Default: 0.
dist_to_waypoint : float.
The distance that a streamline node has to be from the waypoint
ROI in order to be included or excluded.
If set to None (default), will be calculated as the
center-to-corner distance of the voxel in the diffusion data.
If a bundle has inc_addtol or exc_addtol in its bundle_dict, that
tolerance will be added to this distance.
For example, if you wanted to increase tolerance for the right
arcuate waypoint ROIs by 3 each, you could make the following
modification to your bundle_dict:
bundle_dict["Right Arcuate"]["inc_addtol"] = [3, 3]
Additional tolerances can also be negative.
Default: None.
rng : RandomState or int
If None, creates RandomState.
If int, creates RandomState with seed rng.
Used in RecoBundles Algorithm.
Default: None.
return_idx : bool
Whether to return the indices in the original streamlines as part
of the output of segmentation.
Default: False.
filter_by_endpoints: bool
Whether to filter the bundles based on their endpoints.
Default: True.
dist_to_atlas : float
If filter_by_endpoints is True, this is the required distance
from the endpoints to the atlas ROIs.
Default: 4
save_intermediates : str, optional
The full path to a folder into which intermediate products
are saved. Default: None, means no saving of intermediates.
cleaning_params : dict, optional
Cleaning params to pass to seg.clean_bundle. This will
override the default parameters of that method. However, this
can be overriden by setting the cleaning parameters in the
bundle_dict. Default: {}.
References
----------
.. [Hua2008] Hua K, Zhang J, Wakana S, Jiang H, Li X, et al. (2008)
Tract probability maps in stereotaxic spaces: analyses of white
matter anatomy and tract-specific quantification. Neuroimage 39:
336-347
.. [Yeatman2012] Yeatman, Jason D., Robert F. Dougherty, Nathaniel J.
Myall, Brian A. Wandell, and Heidi M. Feldman. 2012. "Tract Profiles of
White Matter Properties: Automating Fiber-Tract Quantification"
PloS One 7 (11): e49790.
.. [Garyfallidis17] Garyfallidis et al. Recognition of white matter
bundles using local and global streamline-based registration and
clustering, Neuroimage, 2017.
"""
if rng is None:
rng = np.random.RandomState()
elif isinstance(rng, int):
rng = np.random.RandomState(rng)
if (save_intermediates is not None) and \
(not op.exists(save_intermediates)):
os.makedirs(save_intermediates, exist_ok=True)
logger.info("Preprocessing Streamlines")
tg = abu.read_tg(tg, nb_streamlines)
# If resampling over-write the sft:
if nb_points:
tg = StatefulTractogram(
dps.set_number_of_points(tg.streamlines, nb_points),
tg, tg.space)
if not isinstance(bundle_dict, BundleDict):
bundle_dict = BundleDict(bundle_dict)
tg.to_vox()
n_streamlines = len(tg)
bundle_decisions = np.zeros(
(n_streamlines, len(bundle_dict)),
dtype=np.bool8)
bundle_to_flip = np.zeros(
(n_streamlines, len(bundle_dict)),
dtype=np.bool8)
bundle_roi_dists = -np.ones(
(
n_streamlines,
len(bundle_dict),
bundle_dict.max_includes),
dtype=np.uint32)
fiber_groups = {}
meta = {}
preproc_imap = get_preproc_plan(img, tg, dist_to_waypoint, dist_to_atlas)
logger.info("Assigning Streamlines to Bundles")
for bundle_idx, bundle_name in enumerate(
bundle_dict.bundle_names):
logger.info(f"Finding Streamlines for {bundle_name}")
run_bundle_rec_plan(
bundle_dict, tg, mapping, img, reg_template, preproc_imap,
bundle_name, bundle_idx, bundle_to_flip, bundle_roi_dists,
bundle_decisions,
clip_edges=clip_edges,
parallel_segmentation=parallel_segmentation,
rb_recognize_params=rb_recognize_params,
prob_threshold=prob_threshold,
refine_reco=refine_reco,
rng=rng,
return_idx=return_idx,
filter_by_endpoints=filter_by_endpoints,
save_intermediates=save_intermediates,
cleaning_params=cleaning_params)
if save_intermediates is not None:
os.makedirs(save_intermediates, exist_ok=True)
bc_path = op.join(save_intermediates,
"sls_bundle_decisions.npy")
np.save(bc_path, bundle_decisions)
conflicts = np.sum(np.sum(bundle_decisions, axis=1) > 1)
if conflicts > 0:
logger.warning((
"Conflicts in bundle assignment detected. "
f"{conflicts} conflicts detected in total out of "
f"{n_streamlines} total streamlines."
"Defaulting to whichever bundle appears first"
"in the bundle_dict."))
bundle_decisions = np.concatenate((
bundle_decisions, np.ones((n_streamlines, 1))), axis=1)
bundle_decisions = np.argmax(bundle_decisions, -1)
# We do another round through, so that we can:
# 1. Clip streamlines according to ROIs
# 2. Re-orient streamlines
logger.info("Re-orienting streamlines to consistent directions")
for bundle_idx, bundle in enumerate(bundle_dict.bundle_names):
logger.info(f"Processing {bundle}")
select_idx = np.where(bundle_decisions == bundle_idx)[0]
if len(select_idx) == 0:
# There's nothing here, set and move to the next bundle:
if "bundlesection" in bundle_dict.get_b_info(bundle):
for sb_name in bundle_dict.get_b_info(bundle)[
"bundlesection"]:
_return_empty(sb_name, return_idx, fiber_groups, img)
else:
_return_empty(bundle, return_idx, fiber_groups, img)
continue
# Use a list here, because ArraySequence doesn't support item
# assignment:
select_sl = list(tg.streamlines[select_idx])
roi_dists = bundle_roi_dists[select_idx, bundle_idx, :]
n_includes = len(bundle_dict.get_b_info(
bundle).get("include", []))
if clip_edges and n_includes > 1:
logger.info("Clipping Streamlines by ROI")
select_sl = abu.cut_sls_by_dist(
select_sl, roi_dists,
(0, n_includes - 1), in_place=True)
to_flip = bundle_to_flip[select_idx, bundle_idx]
b_def = dict(bundle_dict.get_b_info(bundle_name))
if "bundlesection" in b_def:
for sb_name, sb_include_cuts in bundle_dict.get_b_info(
bundle)["bundlesection"].items():
bundlesection_select_sl = abu.cut_sls_by_dist(
select_sl, roi_dists,
sb_include_cuts, in_place=False)
_add_bundle_to_fiber_group(
sb_name, bundlesection_select_sl, select_idx,
to_flip, return_idx, fiber_groups, img)
_add_bundle_to_meta(sb_name, b_def, meta)
else:
_add_bundle_to_fiber_group(
bundle, select_sl, select_idx, to_flip,
return_idx, fiber_groups, img)
_add_bundle_to_meta(bundle, b_def, meta)
return fiber_groups, meta
# Helper functions for formatting the results
[docs]def _return_empty(bundle_name, return_idx, fiber_groups, img):
"""
Helper function to return an empty dict under
some conditions.
"""
if return_idx:
fiber_groups[bundle_name] = {}
fiber_groups[bundle_name]['sl'] = StatefulTractogram(
[], img, Space.VOX)
fiber_groups[bundle_name]['idx'] = np.array([])
else:
fiber_groups[bundle_name] = StatefulTractogram(
[], img, Space.VOX)
[docs]def _add_bundle_to_fiber_group(b_name, sl, idx, to_flip,
return_idx, fiber_groups, img):
"""
Helper function to add a bundle to a fiber group.
"""
sl = abu.flip_sls(
sl, to_flip,
in_place=False)
sl = StatefulTractogram(
sl,
img,
Space.VOX)
if return_idx:
fiber_groups[b_name] = {}
fiber_groups[b_name]['sl'] = sl
fiber_groups[b_name]['idx'] = idx
else:
fiber_groups[b_name] = sl