Source code for AFQ.recognition.roi

import numpy as np
from dipy.core.interpolation import interpolate_scalar_3d


[docs]def _interp3d(roi, sl): return interpolate_scalar_3d(roi.get_fdata(), np.asarray(sl))[0]
[docs]def check_sls_with_inclusion(sls, include_rois, include_roi_tols): for sl in sls: yield check_sl_with_inclusion( sl, include_rois, include_roi_tols)
[docs]def check_sl_with_inclusion(sl, include_rois, include_roi_tols): """ Helper function to check that a streamline is close to a list of inclusion ROIS. """ closest = np.zeros(len(include_rois), dtype=np.int32) for ii, roi in enumerate(include_rois): dist = _interp3d(roi, sl) closest[ii] = np.argmin(dist) if dist[closest[ii]] > include_roi_tols[ii]: # Too far from one of them: return False, [] # Apparently you checked all the ROIs and it was close to all of them return True, closest
[docs]def check_sl_with_exclusion(sl, exclude_rois, exclude_roi_tols): """ Helper function to check that a streamline is not too close to a list of exclusion ROIs. """ for ii, roi in enumerate(exclude_rois): # if any part of the streamline is near any exclusion ROI, # return False if np.any(_interp3d(roi, sl) <= exclude_roi_tols[ii]): return False # Either there are no exclusion ROIs, or you are not close to any: return True
[docs]def clean_by_endpoints(streamlines, target, target_idx, tol=0, flip_sls=None, accepted_idxs=None): """ Clean a collection of streamlines based on an endpoint ROI. Filters down to only include items that have their start or end points close to the targets. Parameters ---------- streamlines : sequence of N by 3 arrays Where N is number of nodes in the array, the collection of streamlines to filter down to. target: Nifti1Image Nifti1Image containing a boolean representation of the ROI. target_idx: int. Index within each streamline to check if within the target region. Typically 0 for startpoint ROIs or -1 for endpoint ROIs. If using flip_sls, this becomes (len(sl) - this_idx - 1) % len(sl) tol : int, optional A distance tolerance (in units that the coordinates of the streamlines are represented in). Default: 0, which means that the endpoint is exactly in the coordinate of the target ROI. flip_sls : 1d array, optional Length is len(streamlines), whether to flip the streamline. accepted_idxs : 1d array, optional Boolean array, where entries correspond to eachs streamline, and streamlines that pass cleaning will be set to 1. Yields ------- boolean array of streamlines that survive cleaning. """ if accepted_idxs is None: accepted_idxs = np.zeros(len(streamlines), dtype=np.bool_) if flip_sls is None: flip_sls = np.zeros(len(streamlines)) flip_sls = flip_sls.astype(int) for ii, sl in enumerate(streamlines): this_idx = target_idx if flip_sls[ii]: this_idx = (len(sl) - this_idx - 1) % len(sl) accepted_idxs[ii] = _interp3d(target, [sl[this_idx]])[0] <= tol return accepted_idxs