Source code for AFQ.recognition.roi
import numpy as np
from dipy.core.interpolation import interpolate_scalar_3d
[docs]def _interp3d(roi, sl):
return interpolate_scalar_3d(roi.get_fdata(), np.asarray(sl))[0]
[docs]def check_sls_with_inclusion(sls, include_rois, include_roi_tols):
for sl in sls:
yield check_sl_with_inclusion(
sl,
include_rois,
include_roi_tols)
[docs]def check_sl_with_inclusion(sl, include_rois,
include_roi_tols):
"""
Helper function to check that a streamline is close to a list of
inclusion ROIS.
"""
closest = np.zeros(len(include_rois), dtype=np.int32)
for ii, roi in enumerate(include_rois):
dist = _interp3d(roi, sl)
closest[ii] = np.argmin(dist)
if dist[closest[ii]] > include_roi_tols[ii]:
# Too far from one of them:
return False, []
# Apparently you checked all the ROIs and it was close to all of them
return True, closest
[docs]def check_sl_with_exclusion(sl, exclude_rois,
exclude_roi_tols):
""" Helper function to check that a streamline is not too close to a
list of exclusion ROIs.
"""
for ii, roi in enumerate(exclude_rois):
# if any part of the streamline is near any exclusion ROI,
# return False
if np.any(_interp3d(roi, sl) <= exclude_roi_tols[ii]):
return False
# Either there are no exclusion ROIs, or you are not close to any:
return True
[docs]def clean_by_endpoints(streamlines, target, target_idx, tol=0,
flip_sls=None, accepted_idxs=None):
"""
Clean a collection of streamlines based on an endpoint ROI.
Filters down to only include items that have their start or end points
close to the targets.
Parameters
----------
streamlines : sequence of N by 3 arrays
Where N is number of nodes in the array, the collection of
streamlines to filter down to.
target: Nifti1Image
Nifti1Image containing a boolean representation of the ROI.
target_idx: int.
Index within each streamline to check if within the target region.
Typically 0 for startpoint ROIs or -1 for endpoint ROIs.
If using flip_sls, this becomes (len(sl) - this_idx - 1) % len(sl)
tol : int, optional
A distance tolerance (in units that the coordinates
of the streamlines are represented in). Default: 0, which means that
the endpoint is exactly in the coordinate of the target ROI.
flip_sls : 1d array, optional
Length is len(streamlines), whether to flip the streamline.
accepted_idxs : 1d array, optional
Boolean array, where entries correspond to eachs streamline,
and streamlines that pass cleaning will be set to 1.
Yields
-------
boolean array of streamlines that survive cleaning.
"""
if accepted_idxs is None:
accepted_idxs = np.zeros(len(streamlines), dtype=np.bool_)
if flip_sls is None:
flip_sls = np.zeros(len(streamlines))
flip_sls = flip_sls.astype(int)
for ii, sl in enumerate(streamlines):
this_idx = target_idx
if flip_sls[ii]:
this_idx = (len(sl) - this_idx - 1) % len(sl)
accepted_idxs[ii] = _interp3d(target, [sl[this_idx]])[0] <= tol
return accepted_idxs