:py:mod:`AFQ.tasks.viz` ======================= .. py:module:: AFQ.tasks.viz Module Contents --------------- Functions ~~~~~~~~~ .. autoapisummary:: AFQ.tasks.viz._viz_prepare_vol AFQ.tasks.viz.viz_bundles AFQ.tasks.viz.viz_indivBundle AFQ.tasks.viz.plot_tract_profiles AFQ.tasks.viz.init_viz_backend AFQ.tasks.viz.get_viz_plan Attributes ~~~~~~~~~~ .. autoapisummary:: AFQ.tasks.viz.logger .. py:data:: logger .. py:function:: _viz_prepare_vol(vol, xform, mapping, scalar_dict) .. py:function:: viz_bundles(base_fname, viz_backend, data_imap, mapping_imap, segmentation_imap, tracking_params, segmentation_params, best_scalar, sbv_lims_bundles=[None, None], volume_opacity_bundles=0.3, n_points_bundles=40) figure for the visualizaion of the recognized bundles in the subject's brain. :Parameters: **sbv_lims_bundles** : ndarray Of the form (lower bound, upper bound). Shading based on shade_by_volume will only differentiate values within these bounds. If lower bound is None, will default to 0. If upper bound is None, will default to the maximum value in shade_by_volume. Default: [None, None] **volume_opacity_bundles** : float, optional Opacity of volume slices. Default: 0.3 **n_points_bundles** : int or None n_points to resample streamlines to before plotting. If None, no resampling is done. Default: 40 :Returns: List of Figure, String or just the Figure: .. If file can be generated, returns a tuple including the figure and the .. path to the file. .. Otherwise, returns the figure. .. .. !! processed by numpydoc !! .. py:function:: viz_indivBundle(base_fname, output_dir, viz_backend, data_imap, mapping_imap, segmentation_imap, tracking_params, segmentation_params, best_scalar, sbv_lims_indiv=[None, None], volume_opacity_indiv=0.3, n_points_indiv=40) list of full paths to html or gif files containing visualizaions of individual bundles :Parameters: **sbv_lims_indiv** : ndarray Of the form (lower bound, upper bound). Shading based on shade_by_volume will only differentiate values within these bounds. If lower bound is None, will default to 0. If upper bound is None, will default to the maximum value in shade_by_volume. Default: [None, None] **volume_opacity_indiv** : float, optional Opacity of volume slices. Default: 0.3 **n_points_indiv** : int or None n_points to resample streamlines to before plotting. If None, no resampling is done. Default: 40 .. !! processed by numpydoc !! .. py:function:: plot_tract_profiles(base_fname, scalars, tracking_params, segmentation_params, segmentation_imap) list of full paths to png files, where files contain plots of the tract profiles .. !! processed by numpydoc !! .. py:function:: init_viz_backend(viz_backend_spec='plotly_no_gif', virtual_frame_buffer=False) An instance of the `AFQ.viz.utils.viz_backend` class. :Parameters: **virtual_frame_buffer** : bool, optional Whether to use a virtual fram buffer. This is neccessary if generating GIFs in a headless environment. Default: False **viz_backend_spec** : str, optional Which visualization backend to use. See Visualization Backends page in documentation for details: https://tractometry.org/pyAFQ/usage/viz_backend.html One of {"fury", "plotly", "plotly_no_gif"}. Default: "plotly_no_gif" .. !! processed by numpydoc !! .. py:function:: get_viz_plan(kwargs)