:py:mod:`AFQ.tasks.segmentation` ================================ .. py:module:: AFQ.tasks.segmentation Module Contents --------------- Functions ~~~~~~~~~ .. autoapisummary:: AFQ.tasks.segmentation.segment AFQ.tasks.segmentation.export_bundles AFQ.tasks.segmentation.export_sl_counts AFQ.tasks.segmentation.export_bundle_lengths AFQ.tasks.segmentation.export_density_maps AFQ.tasks.segmentation.tract_profiles AFQ.tasks.segmentation.get_scalar_dict AFQ.tasks.segmentation.get_segmentation_plan Attributes ~~~~~~~~~~ .. autoapisummary:: AFQ.tasks.segmentation.has_trx AFQ.tasks.segmentation.logger .. py:data:: has_trx :value: True .. py:data:: logger .. py:function:: segment(data_imap, mapping_imap, tractography_imap, segmentation_params) full path to a trk/trx file containing containing segmented streamlines, labeled by bundle :Parameters: **segmentation_params** : dict, optional The parameters for segmentation. Default: use the default behavior of the seg.Segmentation object. .. !! processed by numpydoc !! .. py:function:: export_bundles(base_fname, output_dir, bundles, tracking_params, segmentation_params) dictionary of paths, where each path is a full path to a trk file containing the streamlines of a given bundle. .. !! processed by numpydoc !! .. py:function:: export_sl_counts(bundles) full path to a JSON file containing streamline counts .. !! processed by numpydoc !! .. py:function:: export_bundle_lengths(bundles) full path to a JSON file containing median bundle lengths .. !! processed by numpydoc !! .. py:function:: export_density_maps(bundles, data_imap) full path to 4d nifti file containing streamline counts per voxel per bundle, where the 4th dimension encodes the bundle .. !! processed by numpydoc !! .. py:function:: tract_profiles(bundles, scalar_dict, data_imap, profile_weights='gauss', n_points_profile=100) full path to a CSV file containing tract profiles :Parameters: **profile_weights** : str, 1D array, 2D array callable, optional How to weight each streamline (1D) or each node (2D) when calculating the tract-profiles. If callable, this is a function that calculates weights. If None, no weighting will be applied. If "gauss", gaussian weights will be used. If "median", the median of values at each node will be used instead of a mean or weighted mean. Default: "gauss" **n_points_profile** : int, optional Number of points to resample each streamline to before calculating the tract-profiles. Default: 100 .. !! processed by numpydoc !! .. py:function:: get_scalar_dict(data_imap, mapping_imap, scalars=['dti_fa', 'dti_md']) dicionary mapping scalar names to their respective file paths :Parameters: **scalars** : list of strings and/or scalar definitions, optional List of scalars to use. Can be any of: "dti_fa", "dti_md", "dki_fa", "dki_md", "dki_awf", "dki_mk". Can also be a scalar from AFQ.definitions.image. Default: ["dti_fa", "dti_md"] .. !! processed by numpydoc !! .. py:function:: get_segmentation_plan(kwargs)